Statistical Fluctuation of Infinitesimal Spaces

This paper is a follow-up on the \emph{noncommutative differential geometry on infinitesimal spaces} [15]. In the present work, we extend the algebraic convergence from [15] to the geometric setting. On the one hand, we reformulate the definition of finite dimensional compatible Dirac operators using Clifford algebras. This definition also leads to a new construction of a Laplace operator. On the other hand, after a well-chosen Green's function defined on a manifold, we show that when the Dirac operators can be interpreted as stochastic matrices. The sequence $(D_n)_{n\in \mathbb{N}}$ converges then in average to the usual Dirac operator on a spin manifold. The same conclusion can be drawn for the Laplace operator.

[1]  Jean-Christophe Nave,et al.  Noncommutative Differential Geometry on Infinitesimal Spaces , 2022, ArXiv.

[2]  M. Khalkhali,et al.  Spectral statistics of Dirac ensembles , 2021, Journal of Mathematical Physics.

[3]  Leonardo Morlino,et al.  Inequalities , 2020, Algebra for Parents.

[4]  Gerd Rudolph,et al.  Differential Geometry and Mathematical Physics: Part II. Fibre Bundles, Topology and Gauge Fields , 2017 .

[5]  Jean-Christophe Nave,et al.  On the Arbitrarily Long-Term Stability of Conservative Methods , 2016, SIAM J. Numer. Anal..

[6]  Vladimir I. Bogachev,et al.  Fokker-planck-kolmogorov Equations , 2015 .

[7]  Jean-Christophe Nave,et al.  The Multiplier Method to Construct Conservative Finite Difference Schemes for Ordinary and Partial Differential Equations , 2014, SIAM J. Numer. Anal..

[8]  Charles M. Elliott,et al.  Finite element methods for surface PDEs* , 2013, Acta Numerica.

[9]  E. Meinrenken Clifford Algebras and Lie Theory , 2013 .

[10]  Jean-Christophe Nave,et al.  Convecting reference frames and invariant numerical models , 2013, J. Comput. Phys..

[11]  Mikhail Belkin,et al.  Constructing Laplace operator from point clouds in Rd , 2009, SODA.

[12]  Mikhail Belkin,et al.  Towards a theoretical foundation for Laplacian-based manifold methods , 2005, J. Comput. Syst. Sci..

[13]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[14]  Qingbing Liu SOME INEQUALITIES ON THE PERRON EIGENVALUE AND EIGENVECTORS FOR POSITIVE TENSORS , 2016 .

[15]  M. Wardetzky Convergence of the Cotangent Formula: An Overview , 2008 .

[16]  A. Connes,et al.  Noncommutative Geometry, Quantum Fields and Motives , 2007 .

[17]  M. Shashkov,et al.  Compatible spatial discretizations , 2006 .

[18]  J. Marsden,et al.  Discrete exterior calculus , 2003 .

[19]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[20]  Symmetry, Integrability and Geometry: Methods and Applications Invariant Discretization Schemes Using Evolution–Projection Techniques ⋆ , 2022 .