Glaucoma risk index:  Automated glaucoma detection from color fundus images

Glaucoma as a neurodegeneration of the optic nerve is one of the most common causes of blindness. Because revitalization of the degenerated nerve fibers of the optic nerve is impossible early detection of the disease is essential. This can be supported by a robust and automated mass-screening. We propose a novel automated glaucoma detection system that operates on inexpensive to acquire and widely used digital color fundus images. After a glaucoma specific preprocessing, different generic feature types are compressed by an appearance-based dimension reduction technique. Subsequently, a probabilistic two-stage classification scheme combines these features types to extract the novel Glaucoma Risk Index (GRI) that shows a reasonable glaucoma detection performance. On a sample set of 575 fundus images a classification accuracy of 80% has been achieved in a 5-fold cross-validation setup. The GRI gains a competitive area under ROC (AUC) of 88% compared to the established topography-based glaucoma probability score of scanning laser tomography with AUC of 87%. The proposed color fundus image-based GRI achieves a competitive and reliable detection performance on a low-priced modality by the statistical analysis of entire images of the optic nerve head.

[1]  N. Swindale,et al.  Automated analysis of normal and glaucomatous optic nerve head topography images. , 2000, Investigative ophthalmology & visual science.

[2]  E. DeLong,et al.  Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. , 1988, Biometrics.

[3]  László G. Nyúl,et al.  Effects of Preprocessing Eye Fundus Images on Appearance Based Glaucoma Classification , 2007, CAIP.

[4]  Roland Wilson,et al.  Analysis of Retinal Vasculature Using a Multiresolution Hermite Model , 2007, IEEE Transactions on Medical Imaging.

[5]  Max A. Viergever,et al.  Ridge-based vessel segmentation in color images of the retina , 2004, IEEE Transactions on Medical Imaging.

[6]  Heinrich Niemann,et al.  Automated segmentation of the optic nerve head for diagnosis of glaucoma , 2005, Medical Image Anal..

[7]  R. Klein,et al.  Prevalence of glaucoma. The Beaver Dam Eye Study. , 1992, Ophthalmology.

[8]  M. J. Carreira,et al.  Localization and Extraction of the Optic Disc Using the Fuzzy Circular Hough Transform , 2006, ICAISC.

[9]  Li Wang,et al.  Analysis of Retinal Vasculature Using a , 2007 .

[10]  Andrew Hunter,et al.  An Active Contour Model for Segmenting and Measuring Retinal Vessels , 2009, IEEE Transactions on Medical Imaging.

[11]  F. Medeiros,et al.  Frequency doubling technology perimetry abnormalities as predictors of glaucomatous visual field loss. , 2004, American journal of ophthalmology.

[12]  B C Chauhan,et al.  Technique for detecting serial topographic changes in the optic disc and peripapillary retina using scanning laser tomography. , 2000, Investigative ophthalmology & visual science.

[13]  Joachim Hornegger,et al.  The papilla as screening parameter for early diagnosis of glaucoma. , 2008, Deutsches Arzteblatt international.

[14]  Michael Unser,et al.  Splines: a perfect fit for signal and image processing , 1999, IEEE Signal Process. Mag..

[15]  G. Lavergne,et al.  Biometric study of the disc cup in open-angle glaucoma , 2005, Graefe's Archive for Clinical and Experimental Ophthalmology.

[16]  A.D. Hoover,et al.  Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response , 2000, IEEE Transactions on Medical Imaging.

[17]  Carmen A Puliafito,et al.  Automated detection of retinal layer structures on optical coherence tomography images. , 2005, Optics express.

[18]  Huiqi Li,et al.  Boundary detection of optic disk by a modified ASM method , 2003, Pattern Recognit..

[19]  Tony F. Chan,et al.  Mathematical Models for Local Nontexture Inpaintings , 2002, SIAM J. Appl. Math..

[20]  Aliaa A. A. Youssif,et al.  Optic Disc Detection From Normalized Digital Fundus Images by Means of a Vessels' Direction Matched Filter , 2008, IEEE Transactions on Medical Imaging.

[21]  Mauro Vavassori,et al.  Detection of glaucomatous visual field changes using the Moorfields regression analysis of the Heidelberg retina tomograph. , 2003, American journal of ophthalmology.

[22]  Andrew Hunter,et al.  Optic nerve head segmentation , 2004, IEEE Transactions on Medical Imaging.

[23]  Joel S Schuman,et al.  Diagnostic tools for glaucoma detection and management. , 2008, Survey of ophthalmology.

[24]  Aliaa A. A. Youssif,et al.  Comparative Study of Contrast Enhancement and Illumination Equalization Methods for Retinal Vasculat , 2006 .

[25]  Xiaodong Wu,et al.  Segmentation of the optic nerve head combining pixel classification and graph search , 2007, SPIE Medical Imaging.

[26]  M. Foracchia,et al.  A new tracking system for the robust extraction of retinal vessel structure , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[27]  B. Bengtsson The prevalence of glaucoma. , 1981, The British journal of ophthalmology.

[28]  I. Scott,et al.  Expert agreement in evaluating the optic disc for glaucoma. , 1992, Ophthalmology.

[29]  Anil A. Bharath,et al.  Segmentation of blood vessels from red-free and fluorescein retinal images , 2007, Medical Image Anal..

[30]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  László G. Nyúl,et al.  Classifying Glaucoma with Image-Based Features from Fundus Photographs , 2007, DAGM-Symposium.

[32]  Charles V. Stewart,et al.  Retinal Vessel Centerline Extraction Using Multiscale Matched Filters, Confidence and Edge Measures , 2006, IEEE Transactions on Medical Imaging.

[33]  Bernhard Schölkopf,et al.  New Support Vector Algorithms , 2000, Neural Computation.

[34]  Rangaraj M. Rangayyan,et al.  Detection of the Optic Nerve Head in Fundus Images of the Retina Using the Hough Transform for Circles , 2010, Journal of Digital Imaging.

[35]  Robert N Weinreb,et al.  Comparison of HRT-3 glaucoma probability score and subjective stereophotograph assessment for prediction of progression in glaucoma. , 2008, Investigative ophthalmology & visual science.

[36]  W. Feuer,et al.  Scanning laser polarimetry with variable and enhanced corneal compensation in normal and glaucomatous eyes. , 2007, American journal of ophthalmology.

[37]  Charles V. Stewart,et al.  Robust detection and classification of longitudinal changes in color retinal fundus images for monitoring diabetic retinopathy , 2006, IEEE Transactions on Biomedical Engineering.

[38]  Bernhard Schölkopf,et al.  A tutorial on v-support vector machines , 2005 .

[39]  A Sommer,et al.  The optic disc in glaucoma. , 1981, The British journal of ophthalmology.

[40]  Bram van Ginneken,et al.  Segmentation of the Optic Disc, Macula and Vascular Arch in Fundus Photographs , 2007, IEEE Transactions on Medical Imaging.

[41]  Juan Xu,et al.  Optic disk feature extraction via modified deformable model technique for glaucoma analysis , 2007, Pattern Recognit..

[42]  Roberto Marcondes Cesar Junior,et al.  Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification , 2005, IEEE Transactions on Medical Imaging.

[43]  Bram van Ginneken,et al.  Comparative study of retinal vessel segmentation methods on a new publicly available database , 2004, SPIE Medical Imaging.

[44]  G. Wollstein,et al.  Identification of early glaucoma cases with the scanning laser ophthalmoscope. , 1998, Ophthalmology.

[45]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[46]  A. Coleman,et al.  Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma. , 2002, Investigative ophthalmology & visual science.

[47]  Akram Aldroubi,et al.  B-spline signal processing. II. Efficiency design and applications , 1993, IEEE Trans. Signal Process..

[48]  Joel S Schuman,et al.  Optic nerve head and retinal nerve fiber layer analysis: a report by the American Academy of Ophthalmology. , 2007, Ophthalmology.

[49]  Chih-Jen Lin,et al.  A tutorial on?-support vector machines , 2005 .

[50]  Francisco Melo,et al.  StAR: a simple tool for the statistical comparison of ROC curves , 2008, BMC Bioinformatics.

[51]  James S. Duncan,et al.  Medical Image Analysis , 1999, IEEE Pulse.

[52]  Hong Shen,et al.  Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms , 1999, IEEE Transactions on Information Technology in Biomedicine.

[53]  Luis Ibáñez,et al.  The ITK Software Guide , 2005 .

[54]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[55]  Michael Unser,et al.  B-spline signal processing. I. Theory , 1993, IEEE Trans. Signal Process..

[56]  Meindert Niemeijer,et al.  A linking framework for pixel classification based retinal vessel segmentation , 2009, Medical Imaging.

[57]  G. Wollstein,et al.  Glaucoma detection with the Heidelberg retina tomograph 3. , 2007, Ophthalmology.

[58]  F. Medeiros,et al.  Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. , 2004, Archives of ophthalmology.

[59]  Bram van Ginneken,et al.  Fast detection of the optic disc and fovea in color fundus photographs , 2009, Medical Image Anal..

[60]  Young H. Kwon,et al.  Automated segmentation of the optic disc from stereo color photographs using physiologically plausible features. , 2007, Investigative ophthalmology & visual science.

[61]  Elisa Ricci,et al.  Retinal Blood Vessel Segmentation Using Line Operators and Support Vector Classification , 2007, IEEE Transactions on Medical Imaging.