Identification of Nonlinear Coefficients in Hyperbolic PDEs, with Application to Piezoelectricity

In this paper we consider the problem of determining parameters in nonlinear partial differential equations of hyperbolic type from boundary measurements. In order to investigate the qualitative behavior of this class of identification problems, we analyze the model problem of identifying c in the nonlinear wave equation dtt − (c(d x)d x)x = 0 and discuss stability and identifiability for this problem. Moreover, we derive applicability of these results to material parameter identification in piezoelectricity and provide numerical reconstruction results.

[1]  Michael V. Klibanov,et al.  Global uniqueness and Hölder stability for recovering a nonlinear source term in a parabolic equation , 2005 .

[2]  Howard A. Levine,et al.  Instability and Nonexistence of Global Solutions to Nonlinear Wave Equations , 1974 .

[3]  D. Berlincourt,et al.  Piezoelectric transducer materials , 1965 .

[4]  Allan D. Pierce,et al.  Acoustics , 1989 .

[5]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[6]  D. Sattinger,et al.  Saddle points and instability of nonlinear hyperbolic equations , 1975 .

[7]  V. Barbu,et al.  On nonlinear wave equations with degenerate damping and source terms , 2005 .

[8]  Hart F. Smith,et al.  Sharp local well-posedness results for the nonlinear wave equation , 2005 .

[9]  Victor Isakov,et al.  GLOBAL UNIQUENESS FOR A TWO-DIMENSIONAL SEMILINEAR ELLIPTIC INVERSE PROBLEM , 1995 .

[10]  A. Kirsch An Introduction to the Mathematical Theory of Inverse Problems , 1996, Applied Mathematical Sciences.

[11]  Philippe G. LeFloch,et al.  Existence Theory for Hyperbolic Systems of Conservation Laws with General Flux-Functions , 2003 .

[12]  William Rundell,et al.  Unicity in an Inverse Problem for an Unknown Reaction Term in a Reaction-Diffusion Equation , 1985 .

[13]  R. Glassey Blow-up theorems for nonlinear wave equations , 1973 .

[14]  B. Kaltenbacher DETERMINATION OF PARAMETERS IN NONLINEAR HYPERBOLIC PDES VIA A MULTIHARMONIC FORMULATION, USED IN PIEZOELECTRIC MATERIAL CHARACTERIZATION , 2006 .

[15]  V. Isakov Appendix -- Function Spaces , 2017 .

[16]  J. Cannon Determination of the unknown coefficient k(u) in the equation ∇ · k(u) ∇u = 0 from overspecified boundary data☆ , 1967 .

[17]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[18]  An inverse problem for a nonlinear elliptic differential equation , 1987 .

[19]  Barbara Kaltenbacher,et al.  Regularization by projection with a posteriori discretization level choice for linear and nonlinear ill-posed problems , 2000 .

[20]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .

[21]  S. D. Chatterji Proceedings of the International Congress of Mathematicians , 1995 .

[22]  K. H. Hoffmann,et al.  A least squares method for finding the preisach hysteresis operator from measurements , 1989 .

[23]  Paul DuChateau,et al.  An Inverse Problem for a Nonlinear Diffusion Equation , 1980 .

[24]  Serge Alinhac,et al.  Blowup for Nonlinear Hyperbolic Equations , 1995 .

[25]  Peter Monk,et al.  A finite element method for approximating the time-harmonic Maxwell equations , 1992 .

[26]  V. Isakov,et al.  On uniqueness in inverse problems for semilinear parabolic equations , 1993 .

[27]  Hyperbolic systems of conservation laws in one space dimension , 2002, math/0212392.