Generalized Unnormalized Optimal Transport and its fast algorithms
暂无分享,去创建一个
Rongjie Lai | Wuchen Li | Wonjun Lee | Stanley Osher | S. Osher | Wuchen Li | Rongjie Lai | Wonjun Lee
[1] Marco Cuturi,et al. Computational Optimal Transport , 2019 .
[2] Stanley Osher,et al. Unnormalized optimal transport , 2019, J. Comput. Phys..
[3] Bjorn Engquist,et al. Application of optimal transport and the quadratic Wasserstein metric to full-waveform inversion , 2016, 1612.05075.
[4] G. Peyré,et al. Unbalanced Optimal Transport: Geometry and Kantorovich Formulation , 2015 .
[5] Wotao Yin,et al. Algorithm for Hamilton–Jacobi Equations in Density Space Via a Generalized Hopf Formula , 2018, J. Sci. Comput..
[6] M. Rumpf,et al. A generalized model for optimal transport of images including dissipation and density modulation , 2015, 1504.01988.
[7] G. Peyré,et al. Unbalanced Optimal Transport: Geometry and Kantorovich Formulation , 2015, 1508.05216.
[8] Wotao Yin,et al. A Parallel Method for Earth Mover’s Distance , 2018, J. Sci. Comput..
[9] Andrew M. Stuart,et al. Interacting Langevin Diffusions: Gradient Structure and Ensemble Kalman Sampler , 2019, SIAM J. Appl. Dyn. Syst..
[10] Antonin Chambolle,et al. A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.
[11] Stanley Osher,et al. Computations of Optimal Transport Distance with Fisher Information Regularization , 2017, J. Sci. Comput..
[12] Stanley Osher,et al. Unbalanced and Partial $$L_1$$L1 Monge–Kantorovich Problem: A Scalable Parallel First-Order Method , 2018, J. Sci. Comput..
[13] C. Villani. Optimal Transport: Old and New , 2008 .
[14] Gustavo K. Rohde,et al. A Transportation Lp Distance for Signal Analysis , 2016, ArXiv.
[15] François-Xavier Vialard,et al. An Interpolating Distance Between Optimal Transport and Fisher–Rao Metrics , 2010, Foundations of Computational Mathematics.
[16] B. Piccoli,et al. On Properties of the Generalized Wasserstein Distance , 2013, Archive for Rational Mechanics and Analysis.
[17] Stanley Osher,et al. Wasserstein Proximal of GANs , 2018, GSI.
[18] Y. Nesterov. A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .
[19] Bjorn Engquist,et al. Seismic inversion and the data normalization for optimal transport , 2018, Methods and Applications of Analysis.
[20] Stephen P. Boyd,et al. Proximal Algorithms , 2013, Found. Trends Optim..
[21] Yann Brenier,et al. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.
[22] Léon Bottou,et al. Wasserstein GAN , 2017, ArXiv.
[23] A. Tannenbaum,et al. Interpolation of matrices and matrix-valued densities: The unbalanced case , 2018, European Journal of Applied Mathematics.
[24] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[25] Gustavo K. Rohde,et al. A Transportation Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} Distance for Signal Analysis , 2016, Journal of Mathematical Imaging and Vision.
[26] Wuchen Li,et al. Hopf–Cole transformation via generalized Schrödinger bridge problem , 2019, Journal of Differential Equations.
[27] Tryphon T. Georgiou,et al. Matricial Wasserstein-1 Distance , 2017, IEEE Control Systems Letters.
[28] Giuseppe Savaré,et al. Optimal Entropy-Transport problems and a new Hellinger–Kantorovich distance between positive measures , 2015, 1508.07941.
[29] L. Chayes,et al. Transport and equilibrium in non-conservative systems , 2014, Advances in Differential Equations.
[30] B. Piccoli,et al. Generalized Wasserstein Distance and its Application to Transport Equations with Source , 2012, 1206.3219.