Generalized Unnormalized Optimal Transport and its fast algorithms

We introduce fast algorithms for generalized unnormalized optimal transport. To handle densities with different total mass, we consider a dynamic model, which mixes the $L^p$ optimal transport with $L^p$ distance. For $p=1$, we derive the corresponding $L^1$ generalized unnormalized Kantorovich formula. We further show that the problem becomes a simple $L^1$ minimization which is solved efficiently by a primal-dual algorithm. For $p=2$, we derive the $L^2$ generalized unnormalized Kantorovich formula, a new unnormalized Monge problem and the corresponding Monge-Ampere equation. Furthermore, we introduce a new unconstrained optimization formulation of the problem. The associated gradient flow is essentially related to an elliptic equation which can be solved efficiently. Here the proposed gradient descent procedure together with the Nesterov acceleration involves the Hamilton-Jacobi equation which arises from the KKT conditions. Several numerical examples are presented to illustrate the effectiveness of the proposed algorithms.

[1]  Marco Cuturi,et al.  Computational Optimal Transport , 2019 .

[2]  Stanley Osher,et al.  Unnormalized optimal transport , 2019, J. Comput. Phys..

[3]  Bjorn Engquist,et al.  Application of optimal transport and the quadratic Wasserstein metric to full-waveform inversion , 2016, 1612.05075.

[4]  G. Peyré,et al.  Unbalanced Optimal Transport: Geometry and Kantorovich Formulation , 2015 .

[5]  Wotao Yin,et al.  Algorithm for Hamilton–Jacobi Equations in Density Space Via a Generalized Hopf Formula , 2018, J. Sci. Comput..

[6]  M. Rumpf,et al.  A generalized model for optimal transport of images including dissipation and density modulation , 2015, 1504.01988.

[7]  G. Peyré,et al.  Unbalanced Optimal Transport: Geometry and Kantorovich Formulation , 2015, 1508.05216.

[8]  Wotao Yin,et al.  A Parallel Method for Earth Mover’s Distance , 2018, J. Sci. Comput..

[9]  Andrew M. Stuart,et al.  Interacting Langevin Diffusions: Gradient Structure and Ensemble Kalman Sampler , 2019, SIAM J. Appl. Dyn. Syst..

[10]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[11]  Stanley Osher,et al.  Computations of Optimal Transport Distance with Fisher Information Regularization , 2017, J. Sci. Comput..

[12]  Stanley Osher,et al.  Unbalanced and Partial $$L_1$$L1 Monge–Kantorovich Problem: A Scalable Parallel First-Order Method , 2018, J. Sci. Comput..

[13]  C. Villani Optimal Transport: Old and New , 2008 .

[14]  Gustavo K. Rohde,et al.  A Transportation Lp Distance for Signal Analysis , 2016, ArXiv.

[15]  François-Xavier Vialard,et al.  An Interpolating Distance Between Optimal Transport and Fisher–Rao Metrics , 2010, Foundations of Computational Mathematics.

[16]  B. Piccoli,et al.  On Properties of the Generalized Wasserstein Distance , 2013, Archive for Rational Mechanics and Analysis.

[17]  Stanley Osher,et al.  Wasserstein Proximal of GANs , 2018, GSI.

[18]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[19]  Bjorn Engquist,et al.  Seismic inversion and the data normalization for optimal transport , 2018, Methods and Applications of Analysis.

[20]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[21]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[22]  Léon Bottou,et al.  Wasserstein GAN , 2017, ArXiv.

[23]  A. Tannenbaum,et al.  Interpolation of matrices and matrix-valued densities: The unbalanced case , 2018, European Journal of Applied Mathematics.

[24]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[25]  Gustavo K. Rohde,et al.  A Transportation Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} Distance for Signal Analysis , 2016, Journal of Mathematical Imaging and Vision.

[26]  Wuchen Li,et al.  Hopf–Cole transformation via generalized Schrödinger bridge problem , 2019, Journal of Differential Equations.

[27]  Tryphon T. Georgiou,et al.  Matricial Wasserstein-1 Distance , 2017, IEEE Control Systems Letters.

[28]  Giuseppe Savaré,et al.  Optimal Entropy-Transport problems and a new Hellinger–Kantorovich distance between positive measures , 2015, 1508.07941.

[29]  L. Chayes,et al.  Transport and equilibrium in non-conservative systems , 2014, Advances in Differential Equations.

[30]  B. Piccoli,et al.  Generalized Wasserstein Distance and its Application to Transport Equations with Source , 2012, 1206.3219.