H+ transport and coupling by the F0 sector of the ATP synthase: Insights into the molecular mechanism of function

[1]  S. Dunn The polar domain of the b subunit of Escherichia coli F1F0-ATPase forms an elongated dimer that interacts with the F1 sector. , 1992, The Journal of biological chemistry.

[2]  R. D. Simoni,et al.  Deletions in hydrophilic domains of subunit a from the Escherichia coli F1F0-ATP synthase interfere with membrane insertion or F0 assembly. , 1992, The Journal of biological chemistry.

[3]  R. H. Fillingame,et al.  Mutation of alanine 24 to serine in subunit c of the Escherichia coli F1F0-ATP synthase reduces reactivity of aspartyl 61 with dicyclohexylcarbodiimide. , 1991, The Journal of biological chemistry.

[4]  R. H. Fillingame,et al.  Essential residues in the polar loop region of subunit c of Escherichia coli F1F0 ATP synthase defined by random oligonucleotide-primed mutagenesis , 1991, Journal of bacteriology.

[5]  R. E. Mccarty,et al.  Subunit interactions within the chloroplast ATP synthase (CF0-CF1) as deduced by specific depletion of CF0 polypeptides. , 1990, The Journal of biological chemistry.

[6]  R. H. Fillingame,et al.  The essential carboxyl group in subunit c of the F1F0 ATP synthase can be moved and H(+)-translocating function retained. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[7]  R. D. Simoni,et al.  A topological analysis of subunit alpha from Escherichia coli F1F0-ATP synthase predicts eight transmembrane segments. , 1990, The Journal of biological chemistry.

[8]  S. Howitt,et al.  Mutational analysis of the function of the a-subunit of the F0F1-APPase of Escherichia coli. , 1990, Biochimica et biophysica acta.

[9]  Christian Bjørbæk,et al.  The transmembrane topology of the α subunit from the ATPase in Escherichia coli analyzed by PhoA protein fusions , 1990 .

[10]  R. H. Fillingame CHAPTER 12 – Molecular Mechanics of ATP Synthesis by F1F0-Type H+ -Transporting ATP Synthases , 1990 .

[11]  R. H. Fillingame,et al.  Mutations in three of the putative transmembrane helices of subunit a of the Escherichia coli F1F0-ATPase disrupt ATP-driven proton translocation. , 1989, Archives of biochemistry and biophysics.

[12]  P. Dimroth,et al.  The sodium ion translocating adenosinetriphosphatase of Propionigenium modestum pumps protons at low sodium ion concentrations. , 1989, Biochemistry.

[13]  M. Girvin,et al.  Organization of the F0 sector of Escherichia coli H+-ATPase: the polar loop region of subunit c extends from the cytoplasmic face of the membrane. , 1989, Biochemistry.

[14]  R. H. Fillingame,et al.  Conserved polar loop region of Escherichia coli subunit c of the F1F0 H+-ATPase. Glutamine 42 is not absolutely essential, but substitutions alter binding and coupling of F1 to F0. , 1989, The Journal of biological chemistry.

[15]  R. H. Fillingame,et al.  H+-ATPase activity of Escherichia coli F1F0 is blocked after reaction of dicyclohexylcarbodiimide with a single proteolipid (subunit c) of the F0 complex. , 1989, The Journal of biological chemistry.

[16]  B. Cain,et al.  Proton translocation by the F1F0ATPase of Escherichia coli. Mutagenic analysis of the a subunit. , 1989, The Journal of biological chemistry.

[17]  R. H. Fillingame,et al.  Mutations in the conserved proline 43 residue of the uncE protein (subunit c) of Escherichia coli F1F0-ATPase alter the coupling of F1 to F0. , 1989, The Journal of biological chemistry.

[18]  A. E. Senior,et al.  ATP synthesis by oxidative phosphorylation. , 1988, Physiological reviews.

[19]  S. Howitt,et al.  The proton pore in the Escherichia coli F0F1-ATPase: a requirement for arginine at position 210 of the a-subunit. , 1987, Biochimica et biophysica acta.

[20]  W. Sebald,et al.  Topological studies suggest that the pathway of the protons through F0 is provided by amino acid residues accessible from the lipid phase. , 1986, Biochimie.

[21]  R. H. Fillingame,et al.  H+-ATPase of Escherichia coli. An uncE mutation impairing coupling between F1 and Fo but not Fo-mediated H+ translocation. , 1985, The Journal of biological chemistry.

[22]  J. Aris,et al.  Cross-linking and labeling of the Escherichia coli F1F0-ATP synthase reveal a compact hydrophilic portion of F0 close to an F1 catalytic subunit. , 1983, The Journal of biological chemistry.

[23]  R. H. Fillingame,et al.  Stoichiometry of subunits in the H+-ATPase complex of Escherichia coli. , 1982, The Journal of biological chemistry.

[24]  R. L. Cross The mechanism and regulation of ATP synthesis by F1-ATPases. , 1981, Annual review of biochemistry.

[25]  R. H. Fillingame The proton-translocating pumps of oxidative phosphorylation. , 1980, Annual review of biochemistry.