Metamaterial Inspired Radio Frequency-Based Touchpad Sensor System

This paper proposes a metamaterial inspired radio frequency touchpad sensor system based on two split ring resonators (SRRs) realized on a Rogers/Duroid 5870 with 2.33 dielectric constant = 2.33, loss tangent = 0.0012, and thickness = 0.8 mm. The touchpad consists of two SRRs resonating at <inline-formula> <tex-math notation="LaTeX">$f_{1} = 2.74$ </tex-math></inline-formula> GHz and <inline-formula> <tex-math notation="LaTeX">$f_{2} = 3.86$ </tex-math></inline-formula> GHz. When a finger is placed on SRR 1, <inline-formula> <tex-math notation="LaTeX">$f_{1}$ </tex-math></inline-formula> changes from 2.74 to 2.57 GHz due to electromagnetic coupling between the SRR and the finger, and similarly, <inline-formula> <tex-math notation="LaTeX">$f_{2}$ </tex-math></inline-formula> changes from 3.86 to 3.76 GHz. The proposed touchpad system can detect a finger wearing a glove, in contrast to capacitive touchpads utilized in contemporary smart phones. We demonstrated 56- and 49-MHz frequency shifts for <inline-formula> <tex-math notation="LaTeX">$f_{1}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$f_{2}$ </tex-math></inline-formula>, respectively, with 1.66-mm total thickness (0.69-mm-thick photo paper and 0.97-mm-thick glass slide).

[1]  Sungjoon Lim,et al.  Paper-Based Capacitive Touchpad Using Home Inkjet Printer , 2016, Journal of Display Technology.

[2]  Christopher L. Holloway,et al.  Fluid interactions with metafilms/metasurfaces for tuning, sensing, and microwave-assisted chemical processes , 2011 .

[3]  Ekaterina Shamonina,et al.  Analytical formulation for the resonant frequency of split rings , 2009 .

[4]  Derek Abbott,et al.  High-Sensitivity Metamaterial-Inspired Sensor for Microfluidic Dielectric Characterization , 2014, IEEE Sensors Journal.

[5]  J. Lewis,et al.  Pen‐on‐Paper Flexible Electronics , 2011, Advanced materials.

[6]  Jong-Gwan Yook,et al.  Biosensing using split-ring resonators at microwave regime , 2008 .

[7]  Igal Brener,et al.  Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. , 2008, Optics express.

[8]  Ferran Paredes,et al.  Electrically Small Resonators for Planar Metamaterial, Microwave Circuit and Antenna Design: A Comparative Analysis , 2012 .

[9]  Aaron D. Mazzeo,et al.  Paper‐Based, Capacitive Touch Pads , 2012, Advanced materials.

[10]  Alexander Ksendzov,et al.  Integrated optics ring-resonator chemical sensor with polymer transduction layer , 2004 .

[11]  Sungjoon Lim,et al.  Complementary Split-Ring Resonator-Loaded Microfluidic Ethanol Chemical Sensor , 2016, Sensors.

[12]  Manos M. Tentzeris,et al.  Inkjet-Printed Electromagnet-Based Touchpad Using Spiral Resonators , 2016, Journal of Microelectromechanical Systems.

[13]  Sungjoon Lim,et al.  High-Q and miniaturized complementary split ring resonator-loaded substrate integrated waveguide microwave sensor for crack detection in metallic materials , 2014 .

[14]  Li-Feng Wang,et al.  LC Passive Wireless Sensors Toward a Wireless Sensing Platform: Status, Prospects, and Challenges , 2016, Journal of Microelectromechanical Systems.

[15]  Sheng Zhang,et al.  Miniature Passive Wireless Resonant Platform for Chemical Memory-Based Threshold Sensing , 2017, IEEE Sensors Journal.

[16]  Martin Koch,et al.  Thin-film sensing with planar asymmetric metamaterial resonators , 2008 .

[17]  David L. Kaplan,et al.  Metamaterials on Paper as a Sensing Platform , 2011, Advanced materials.

[18]  Mojgan Daneshmand,et al.  Strongly Enhanced Sensitivity in Planar Microwave Sensors Based on Metamaterial Coupling , 2017, IEEE Transactions on Microwave Theory and Techniques.

[19]  Ivan Poupyrev,et al.  Touché: enhancing touch interaction on humans, screens, liquids, and everyday objects , 2012, CHI.

[20]  Jong-Gwan Yook,et al.  DNA sensing based on single element planar double split-ring resonator , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[21]  Christian Debus,et al.  Frequency selective surfaces for high sensitivity terahertz sensing , 2007, 2104.05462.

[22]  Ta-Jen Yen,et al.  A multi-functional plasmonic biosensor. , 2010, Optics express.

[23]  Ferran Martín,et al.  Artificial Transmission Lines for RF and Microwave Applications: Martín/Artificial Transmission Lines for RF and Microwave Applications , 2015 .

[24]  Jong-Gwan Yook,et al.  On the possibility of Biosensors Based on Split Ring Resonators , 2008, 2008 38th European Microwave Conference.

[25]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[26]  N. Jokerst,et al.  Tuned permeability in terahertz split-ring resonators for devices and sensors , 2007 .

[27]  Giorgio Metta,et al.  A tactile sensor for the fingertips of the humanoid robot iCub , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Jianqiang Gu,et al.  Increased frequency shifts in high aspect ratio terahertz split ring resonators , 2009 .