Metabolic regulation of antibiotic resistance.

It is generally assumed that antibiotics and resistance determinants are the task forces of a biological warfare in which each resistance determinant counteracts the activity of a specific antibiotic. According to this view, antibiotic resistance might be considered as a specific response to an injury, not necessarily linked to bacterial metabolism, except for the burden that the acquisition of resistance might impose on the bacteria (fitness costs). Nevertheless, it is known that changes in bacterial metabolism, such as those associated with dormancy or biofilm formation, modulate bacterial susceptibility to antibiotics (phenotypic resistance), indicating that there exists a linkage between bacterial metabolism and antibiotic resistance. The analyses of the intrinsic resistomes of bacterial pathogens also demonstrate that the building up of intrinsic resistance requires the concerted action of many elements, several of which play a relevant role in the bacterial metabolism. In this article, we will review the current knowledge on the linkage between bacterial metabolism and antibiotic resistance and will discuss the role of global metabolic regulators such as Crc in bacterial susceptibility to antibiotics. Given that growing into the human host requires a metabolic adaptation, we will discuss whether this adaptation might trigger resistance even in the absence of selective pressure by antibiotics.

[1]  J. Blázquez,et al.  The Glycerol-3-Phosphate Permease GlpT Is the Only Fosfomycin Transporter in Pseudomonas aeruginosa , 2009, Journal of bacteriology.

[2]  F. Rojo,et al.  Overexpression of the Multidrug Efflux Pumps MexCD-OprJ and MexEF-OprN Is Associated with a Reduction of Type III Secretion in Pseudomonas aeruginosa , 2005, Journal of bacteriology.

[3]  C. Bloch,et al.  Dynamics of success and failure in phage and antibiotic therapy in experimental infections , 2002, BMC Microbiology.

[4]  Chung-Dar Lu,et al.  Regulation of Carbon and Nitrogen Utilization by CbrAB and NtrBC Two-Component Systems in Pseudomonas aeruginosa , 2007, Journal of bacteriology.

[5]  V. Mizrahi,et al.  Tuberculosis Chemotherapy: the Influence of Bacillary Stress and Damage Response Pathways on Drug Efficacy , 2006, Clinical Microbiology Reviews.

[6]  F. Rojo,et al.  Role of the crc Gene in Catabolic Repression of the Pseudomonas putida GPo1 Alkane Degradation Pathway , 2001, Journal of bacteriology.

[7]  R M Hall,et al.  Mobile gene cassettes and integrons: capture and spread of genes by site‐specific recombination , 1995, Molecular microbiology.

[8]  Woojun Park,et al.  Iron Homeostasis Affects Antibiotic-mediated Cell Death in Pseudomonas Species* , 2010, The Journal of Biological Chemistry.

[9]  L. Frost,et al.  The role of H‐NS in silencing F transfer gene expression during entry into stationary phase , 2004, Molecular microbiology.

[10]  A. M. George,et al.  Gene in the major cotransduction gap of the Escherichia coli K-12 linkage map required for the expression of chromosomal resistance to tetracycline and other antibiotics , 1983, Journal of bacteriology.

[11]  P. Phibbs,et al.  Cloning of a catabolite repression control (crc) gene from Pseudomonas aeruginosa, expression of the gene in Escherichia coli, and identification of the gene product in Pseudomonas aeruginosa , 1991, Journal of bacteriology.

[12]  M. Surette,et al.  Swarming populations of Salmonella represent a unique physiological state coupled to multiple mechanisms of antibiotic resistance , 2003, Biological Procedures Online.

[13]  Lucas Smith,et al.  Phenotypic Characterization of Clonal and Nonclonal Pseudomonas aeruginosa Strains Isolated from Lungs of Adults with Cystic Fibrosis , 2007, Journal of Clinical Microbiology.

[14]  U. Gerischer,et al.  Role of Acinetobacter baylyi Crc in Catabolite Repression of Enzymes for Aromatic Compound Catabolism , 2009, Journal of bacteriology.

[15]  N. Hugouvieux-Cotte-Pattat,et al.  Role of the nucleoid-associated protein H-NS in the synthesis of virulence factors in the phytopathogenic bacterium Erwinia chrysanthemi. , 2001, Molecular plant-microbe interactions : MPMI.

[16]  Samuel I. Miller,et al.  Nutrient Availability as a Mechanism for Selection of Antibiotic Tolerant Pseudomonas aeruginosa within the CF Airway , 2010, PLoS pathogens.

[17]  Antoine Danchin,et al.  Large‐scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid‐associated protein, H‐NS , 2001, Molecular microbiology.

[18]  L. Cantley,et al.  The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. , 2005, Genes & development.

[19]  J. Collins,et al.  How antibiotics kill bacteria: from targets to networks , 2010, Nature Reviews Microbiology.

[20]  A. Delcour,et al.  Outer membrane permeability and antibiotic resistance. , 2009, Biochimica et biophysica acta.

[21]  F. Rojo,et al.  The Pseudomonas putida Crc global regulator controls the hierarchical assimilation of amino acids in a complete medium: Evidence from proteomic and genomic analyses , 2009, Proteomics.

[22]  R. Kadner,et al.  Role of Nucleoid-Associated Proteins Hha and H-NS in Expression of Salmonella enterica Activators HilD, HilC, and RtsA Required for Cell Invasion , 2007, Journal of bacteriology.

[23]  I. Wiegand,et al.  beta-Lactamase induction and cell wall recycling in gram-negative bacteria. , 1998, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[24]  A. Alonso,et al.  Expression of Multidrug Efflux Pump SmeDEF by Clinical Isolates of Stenotrophomonas maltophilia , 2001, Antimicrobial Agents and Chemotherapy.

[25]  S. Levy,et al.  Molecular Mechanisms of Antibacterial Multidrug Resistance , 2007, Cell.

[26]  A. Danchin,et al.  Role of Escherichia coli histone-like nucleoid-structuring protein in bacterial metabolism and stress response--identification of targets by two-dimensional electrophoresis. , 1997, European journal of biochemistry.

[27]  S. Lewenza,et al.  Extracellular DNA Chelates Cations and Induces Antibiotic Resistance in Pseudomonas aeruginosa Biofilms , 2008, PLoS pathogens.

[28]  B. Levin,et al.  Non-inherited antibiotic resistance , 2006, Nature Reviews Microbiology.

[29]  R. Chowdhury,et al.  Role of the Histone-Like Nucleoid Structuring Protein in Colonization, Motility, and Bile-Dependent Repression of Virulence Gene Expression in Vibrio cholerae , 2006, Infection and Immunity.

[30]  R. Hancock,et al.  Swarming of Pseudomonas aeruginosa Is Controlled by a Broad Spectrum of Transcriptional Regulators, Including MetR , 2009, Journal of bacteriology.

[31]  P. Cornelis,et al.  Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium. , 2002, Microbiology.

[32]  J. Zieleński,et al.  Cystic fibrosis: genotypic and phenotypic variations. , 1995, Annual review of genetics.

[33]  Joyoti Basu,et al.  The serine/threonine kinase PknB of Mycobacterium tuberculosis phosphorylates PBPA, a penicillin-binding protein required for cell division. , 2006, Microbiology.

[34]  H. Huse Adaptation of Pseudomonas aeruginosa to the cystic fibrosis lung environment , 2013 .

[35]  J. Martínez Antibiotics and Antibiotic Resistance Genes in Natural Environments , 2008, Science.

[36]  P. Rather,et al.  The chromosomal 2'-N-acetyltransferase of Providencia stuartii: physiological functions and genetic regulation. , 1999, Frontiers in bioscience : a journal and virtual library.

[37]  H. Eagle THE EFFECT OF THE SIZE OF THE INOCULUM AND THE AGE OF THE INFECTION ON THE CURATIVE DOSE OF PENICILLIN IN EXPERIMENTAL INFECTIONS WITH STREPTOCOCCI, PNEUMOCOCCI, AND TREPONEMA PALLIDUM , 1949, The Journal of experimental medicine.

[38]  F. Rojo Carbon catabolite repression in Pseudomonas : optimizing metabolic versatility and interactions with the environment. , 2010, FEMS microbiology reviews.

[39]  J. Martínez,et al.  Overexpression of the multidrug efflux pump SmeDEF impairs Stenotrophomonas maltophilia physiology. , 2004, The Journal of antimicrobial chemotherapy.

[40]  A. Marr,et al.  Identification of Genes Involved in Swarming Motility Using a Pseudomonas aeruginosa PAO1 Mini-Tn5-lux Mutant Library , 2006, Journal of bacteriology.

[41]  D. Hooper,et al.  Cross-resistance to fluoroquinolones in multiple-antibiotic-resistant (Mar) Escherichia coli selected by tetracycline or chloramphenicol: decreased drug accumulation associated with membrane changes in addition to OmpF reduction , 1989, Antimicrobial Agents and Chemotherapy.

[42]  P. Phibbs,et al.  Catabolite repression control in the Pseudomonads. , 1996, Research in microbiology.

[43]  M. Ullrich,et al.  NorM, an Erwinia amylovora Multidrug Efflux Pump Involved in In Vitro Competition with Other Epiphytic Bacteria , 2004, Applied and Environmental Microbiology.

[44]  Ann M Stock,et al.  Two-component signal transduction. , 2000, Annual review of biochemistry.

[45]  J. Collins,et al.  A Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics , 2007, Cell.

[46]  J. Martínez,et al.  Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. , 2009, FEMS microbiology reviews.

[47]  Wayne L. Nicholson,et al.  Uncovering New Metabolic Capabilities of Bacillus subtilis Using Phenotype Profiling of Rifampin-Resistant rpoB Mutants , 2007, Journal of bacteriology.

[48]  A. Alonso,et al.  Cloning and Characterization of SmeDEF, a Novel Multidrug Efflux Pump from Stenotrophomonas maltophilia , 2000, Antimicrobial Agents and Chemotherapy.

[49]  H. Smith,et al.  Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. , 1982, Journal of general microbiology.

[50]  O. Berg,et al.  Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. , 2000, Science.

[51]  Diarmaid Hughes,et al.  Antibiotic resistance and its cost: is it possible to reverse resistance? , 2010, Nature Reviews Microbiology.

[52]  W. Shafer,et al.  The farAB‐encoded efflux pump mediates resistance of gonococci to long‐chained antibacterial fatty acids , 1999, Molecular microbiology.

[53]  Q. C. Truong-Bolduc,et al.  MgrA Is a Multiple Regulator of Two New Efflux Pumps in Staphylococcus aureus , 2005, Journal of bacteriology.

[54]  A. Yamaguchi,et al.  Role of Histone-Like Protein H-NS in Multidrug Resistance of Escherichia coli , 2004, Journal of bacteriology.

[55]  Ivan Mijakovic,et al.  MATERIALS AND METHODS , 1981, Green Corrosion Inhibitors: Reviews and Applications.

[56]  H. Yoneyama,et al.  Mechanism of efficient elimination of protein D2 in outer membrane of imipenem-resistant Pseudomonas aeruginosa , 1993, Antimicrobial Agents and Chemotherapy.

[57]  L. Guy,et al.  Quorum-Sensing-Negative (lasR) Mutants of Pseudomonas aeruginosa Avoid Cell Lysis and Death , 2005, Journal of bacteriology.

[58]  H. Nikaido,et al.  Multiple antibiotic resistance and efflux. , 1998, Current opinion in microbiology.

[59]  J. Martínez,et al.  Cloning and Characterization of SmeT, a Repressor of the Stenotrophomonas maltophilia Multidrug Efflux Pump SmeDEF , 2002, Antimicrobial Agents and Chemotherapy.

[60]  Robert E. W. Hancock,et al.  The Sensor Kinase CbrA Is a Global Regulator That Modulates Metabolism, Virulence, and Antibiotic Resistance in Pseudomonas aeruginosa , 2010, Journal of bacteriology.

[61]  H. Juan Small Colony Variants: a Pathogenic Form of Bacteria that Facilitates Persistent and Recurrent Infections , 2009 .

[62]  R. Hancock,et al.  Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa. , 2009, FEMS microbiology reviews.

[63]  E. Groisman The ins and outs of virulence gene expression: Mg2+ as a regulatory signal. , 1998, BioEssays : news and reviews in molecular, cellular and developmental biology.

[64]  F. Muñoz,et al.  Escherichia coli glycogen metabolism is controlled by the PhoP-PhoQ regulatory system at submillimolar environmental Mg2+ concentrations, and is highly interconnected with a wide variety of cellular processes. , 2009, The Biochemical journal.

[65]  M. A. León,et al.  H-NS Regulates DNA Repair inShigella , 1998, Journal of bacteriology.

[66]  F. Baquero,et al.  Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants. , 2002, The Journal of antimicrobial chemotherapy.

[67]  I. Wiegand,et al.  β-Lactamase induction and cell wall recycling in gram-negative bacteria , 1998 .

[68]  David A. D'Argenio,et al.  Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients , 2007, Molecular microbiology.

[69]  R. Özkanca,et al.  Survival of nonspecific porin‐deficient mutants of Escherichia coli in black sea water , 2003, Letters in applied microbiology.

[70]  K. Young,et al.  AmpC and AmpH, proteins related to the class C beta-lactamases, bind penicillin and contribute to the normal morphology of Escherichia coli , 1997, Journal of bacteriology.

[71]  V. Deretic,et al.  Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. , 1996, Microbiological reviews.

[72]  M. Welch,et al.  Mutation of nfxB causes global changes in the physiology and metabolism of Pseudomonas aeruginosa. , 2010, Journal of proteome research.

[73]  K. Kuhen,et al.  A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy , 2010, Nature Communications.

[74]  F. Baquero,et al.  Factors determining resistance to beta-lactam combined with beta-lactamase inhibitors in Escherichia coli. , 1991, The Journal of antimicrobial chemotherapy.

[75]  F. Baquero,et al.  Antibiotics as intermicrobial signaling agents instead of weapons , 2006, Proceedings of the National Academy of Sciences.

[76]  N. Woodford,et al.  Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. , 2009, The Journal of antimicrobial chemotherapy.

[77]  David J. Baumler,et al.  H-NS controls metabolism and stress tolerance in Escherichia coli O157:H7 that influence mouse passage , 2006, BMC Microbiology.

[78]  F. Rojo,et al.  The Target for the Pseudomonas putida Crc Global Regulator in the Benzoate Degradation Pathway Is the BenR Transcriptional Regulator , 2007, Journal of bacteriology.

[79]  B. Levin,et al.  The biological cost of antibiotic resistance. , 1999, Current opinion in microbiology.

[80]  W. Goebel,et al.  Hpt, a bacterial homolog of the microsomal glucose- 6-phosphate translocase, mediates rapid intracellular proliferation in Listeria , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[81]  A. T. Sheldon Antibiotic Resistance: A Survival Strategy , 2005, American Society for Clinical Laboratory Science.

[82]  O. Sahin,et al.  Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[83]  J. Martínez,et al.  Predictive analysis of transmissible quinolone resistance indicates Stenotrophomonas maltophilia as a potential source of a novel family of Qnr determinants , 2008, BMC Microbiology.

[84]  S. W. Lee,et al.  Mode of Action of Penicillin , 1944, Journal of bacteriology.

[85]  J Davies,et al.  Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Maria J. Gomez,et al.  Genes Involved in Intrinsic Antibiotic Resistance of Acinetobacter baylyi , 2006, Antimicrobial Agents and Chemotherapy.

[87]  S. Marzi,et al.  The Crc global regulator binds to an unpaired A-rich motif at the Pseudomonas putida alkS mRNA coding sequence and inhibits translation initiation , 2009, Nucleic acids research.

[88]  E. Böttger,et al.  Fitness Cost of Chromosomal Drug Resistance-Conferring Mutations , 2002, Antimicrobial Agents and Chemotherapy.

[89]  Michelle D. Brazas,et al.  Swarming of Pseudomonas aeruginosa Is a Complex Adaptation Leading to Increased Production of Virulence Factors and Antibiotic Resistance , 2008, Journal of bacteriology.

[90]  K. Hanada,et al.  Roles of the DNA binding proteins H-NS and StpA in homologous recombination and repair of bleomycin-induced damage in Escherichia coli. , 2007, Genes & genetic systems.

[91]  Robert E. W. Hancock,et al.  Complex Ciprofloxacin Resistome Revealed by Screening a Pseudomonas aeruginosa Mutant Library for Altered Susceptibility , 2008, Antimicrobial Agents and Chemotherapy.

[92]  G. Rummel,et al.  Crystal structures explain functional properties of two E. coli porins , 1992, Nature.

[93]  Yipeng Wang,et al.  Selective Silencing of Foreign DNA with Low GC Content by the H-NS Protein in Salmonella , 2006, Science.

[94]  Alison K. Hottes,et al.  Genetic Architecture of Intrinsic Antibiotic Susceptibility , 2009, PloS one.

[95]  Grace Yim,et al.  Antibiotics as signalling molecules , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[96]  D. Pillay,et al.  Analysis of the mechanisms of fluoroquinolone resistance in urinary tract pathogens. , 2006, The Journal of antimicrobial chemotherapy.

[97]  P. Plésiat,et al.  A Two-Component Regulatory System Interconnects Resistance to Polymyxins, Aminoglycosides, Fluoroquinolones, and β-Lactams in Pseudomonas aeruginosa , 2010, Antimicrobial Agents and Chemotherapy.

[98]  J. Hacker,et al.  Role of Histone-Like Proteins H-NS and StpA in Expression of Virulence Determinants of Uropathogenic Escherichia coli , 2006, Journal of bacteriology.

[99]  Tetsuya Hayashi,et al.  Escherichia coli , 1983, CABI Compendium.

[100]  F. Rojo,et al.  Environmental and clinical isolates of Pseudomonas aeruginosa show pathogenic and biodegradative properties irrespective of their origin. , 1999, Environmental microbiology.

[101]  Robert D. Finn,et al.  The PASTA domain: a β-lactam-binding domain , 2002 .

[102]  B. Roe,et al.  Crc Is Involved in Catabolite Repression Control of the bkd Operons of Pseudomonas putida andPseudomonas aeruginosa , 2000, Journal of bacteriology.

[103]  L. Piddock Multidrug-resistance efflux pumps ? not just for resistance , 2006, Nature Reviews Microbiology.

[104]  Douglas M. Warner,et al.  Regulation of the MtrC-MtrD-MtrE efflux-pump system modulates the in vivo fitness of Neisseria gonorrhoeae. , 2007, The Journal of infectious diseases.

[105]  M. Cámara,et al.  Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. , 2009, Current opinion in microbiology.

[106]  Chankyu Park,et al.  Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR , 1995, Journal of bacteriology.

[107]  R. Aminov,et al.  The role of antibiotics and antibiotic resistance in nature. , 2009, Environmental microbiology.

[108]  Fernando Baquero,et al.  The Neglected Intrinsic Resistome of Bacterial Pathogens , 2008, PloS one.

[109]  R. Arbeit,et al.  Persistent and relapsing infections associated with small-colony variants of Staphylococcus aureus. , 1995, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[110]  David A. D'Argenio,et al.  Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[111]  L. Piddock,et al.  The accumulation of five antibacterial agents in porin-deficient mutants of Escherichia coli. , 1993, The Journal of antimicrobial chemotherapy.

[112]  S. Levy,et al.  Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon , 1997, Antimicrobial agents and chemotherapy.

[113]  J. Martínez,et al.  Antibiotics as signals that trigger specific bacterial responses. , 2008, Current opinion in microbiology.

[114]  Manuel Liebeke,et al.  Transcriptome and Functional Analysis of the Eukaryotic-Type Serine/Threonine Kinase PknB in Staphylococcus aureus , 2009, Journal of bacteriology.

[115]  D. P. Speert,et al.  Genetic Adaptation of Pseudomonas aeruginosa to the Airways of Cystic Fibrosis Patients Is Catalyzed by Hypermutation , 2008, Journal of bacteriology.

[116]  P. Phibbs,et al.  Isolation and characterization of catabolite repression control mutants of Pseudomonas aeruginosa PAO , 1991, Journal of bacteriology.

[117]  P. François,et al.  Evidence of an intracellular reservoir in the nasal mucosa of patients with recurrent Staphylococcus aureus rhinosinusitis. , 2005, The Journal of infectious diseases.

[118]  S. Normark,et al.  Contribution of Chromosomal β-Lactamases to β-Lactam Resistance in Enterobacteria , 1986 .

[119]  J. Guest,et al.  Construction and properties of aconitase mutants of Escherichia coli. , 1997, Microbiology.

[120]  A. Alonso,et al.  Multiple antibiotic resistance in Stenotrophomonas maltophilia , 1997, Antimicrobial agents and chemotherapy.

[121]  J. Schlessinger,et al.  Cell Signaling by Receptor Tyrosine Kinases , 2000, Cell.

[122]  E. Bingen,et al.  Molecular DNA analysis for differentiation of persistence or relapse from recurrence in treatment failure ofStreptococcus pyogenes pharyngitis , 1997, European Journal of Clinical Microbiology and Infectious Diseases.

[123]  A. Danchin,et al.  H-NS and H-NS-like proteins in Gram-negative bacteria and their multiple role in the regulation of bacterial metabolism. , 2001, Biochimie.

[124]  Qing‐Yu He,et al.  Phosphoproteomic analysis reveals the multiple roles of phosphorylation in pathogenic bacterium Streptococcus pneumoniae. , 2010, Journal of proteome research.

[125]  B. Christensen,et al.  Distribution of Bacterial Growth Activity in Flow-Chamber Biofilms , 1999, Applied and Environmental Microbiology.

[126]  Kristian Fog Nielsen,et al.  Early adaptive developments of Pseudomonas aeruginosa after the transition from life in the environment to persistent colonization in the airways of human cystic fibrosis hosts. , 2010, Environmental microbiology.

[127]  R. Helling,et al.  Nalidixic Acid-Resistant Mutants of Escherichia coli Deficient in Isocitrate Dehydrogenase , 1971, Journal of bacteriology.

[128]  R. Hall,et al.  A novel family of potentially mobile DNA elements encoding site‐specific gene‐integration functions: integrons , 1989, Molecular microbiology.

[129]  J. Martínez,et al.  SmQnr Contributes to Intrinsic Resistance to Quinolones in Stenotrophomonas maltophilia , 2009, Antimicrobial Agents and Chemotherapy.

[130]  J. Casadesús,et al.  Selection of Small-Colony Variants of Salmonella enterica Serovar Typhimurium in Nonphagocytic Eucaryotic Cells , 2003, Infection and Immunity.

[131]  E. Rubin,et al.  Letting sleeping dos lie: does dormancy play a role in tuberculosis? , 2010, Annual review of microbiology.

[132]  Martin Wagner,et al.  Coexpression of virulence and fosfomycin susceptibility in Listeria: molecular basis of an antimicrobial in vitro–in vivo paradox , 2006, Nature Medicine.

[133]  L. Bryan,et al.  Effects of Membrane-Energy Mutations and Cations on Streptomycin and Gentamicin Accumulation by Bacteria: a Model for Entry of Streptomycin and Gentamicin in Susceptible and Resistant Bacteria , 1977, Antimicrobial Agents and Chemotherapy.

[134]  É. Yergeau,et al.  Metatranscriptomic Analysis of the Response of River Biofilms to Pharmaceutical Products, Using Anonymous DNA Microarrays , 2010, Applied and Environmental Microbiology.

[135]  J. Martínez,et al.  A global view of antibiotic resistance. , 2009, FEMS microbiology reviews.

[136]  S. Projan,et al.  Transcription Profiling of the mgrA Regulon in Staphylococcus aureus , 2006, Journal of bacteriology.

[137]  J. Davies,et al.  Origins, acquisition and dissemination of antibiotic resistance determinants. , 1997, Ciba Foundation symposium.

[138]  T. Mizuno,et al.  Signal transduction and gene regulation through the phosphorylation of two regulatory components: the molecular basis for the osmotic regulation of the porin genes , 1990, Molecular microbiology.

[139]  W. Mcdermott,et al.  THE FATE OF MYCOBACTERIUM TUBERCULOSIS IN MOUSE TISSUES AS DETERMINED BY THE MICROBIAL ENUMERATION TECHNIQUE , 1956, The Journal of experimental medicine.

[140]  W. Goebel,et al.  Identification of Listeria monocytogenes Genes Contributing to Intracellular Replication by Expression Profiling and Mutant Screening , 2006, Journal of bacteriology.

[141]  P. Bennett,et al.  ISCR Elements: Novel Gene-Capturing Systems of the 21st Century? , 2006, Microbiology and Molecular Biology Reviews.

[142]  J. Abranches,et al.  The Molecular Alarmone (p)ppGpp Mediates Stress Responses, Vancomycin Tolerance, and Virulence in Enterococcus faecalis , 2009, Journal of bacteriology.

[143]  Fernando Baquero,et al.  Interactions among Strategies Associated with Bacterial Infection: Pathogenicity, Epidemicity, and Antibiotic Resistance , 2002, Clinical Microbiology Reviews.

[144]  J. Schwartzman,et al.  Role of PknB Kinase in Antibiotic Resistance and Virulence in Community-Acquired Methicillin-Resistant Staphylococcus aureus Strain USA300 , 2010, Infection and Immunity.

[145]  Georg Peters,et al.  Staphylococcus aureus menD and hemB mutants are as infective as the parent strains, but the menadione biosynthetic mutant persists within the kidney. , 2003, The Journal of infectious diseases.

[146]  F. Baquero,et al.  Ecology and evolution of antibiotic resistance. , 2009, Environmental microbiology reports.

[147]  F. Baquero,et al.  H-NS and RpoS regulate emergence of Lac Ara+ mutants of Escherichia coli MCS2 , 1997, Journal of bacteriology.

[148]  R. Proctor,et al.  Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection , 2011, EMBO molecular medicine.

[149]  P. Bennett,et al.  Evidence of Antibiotic Resistance Gene Silencing in Escherichia coli , 2006, Antimicrobial Agents and Chemotherapy.

[150]  J. Govan,et al.  Microbiology of lung infection in cystic fibrosis. , 1992, British medical bulletin.

[151]  F. Baquero,et al.  Biological Cost of AmpC Production forSalmonella enterica Serotype Typhimurium , 2000, Antimicrobial Agents and Chemotherapy.

[152]  S. Normark,et al.  Contribution of chromosomal beta-lactamases to beta-lactam resistance in enterobacteria. , 1986, Reviews of infectious diseases.

[153]  J. Davies,et al.  The truth about antibiotics. , 2006, International journal of medical microbiology : IJMM.

[154]  F. Baquero,et al.  Mutation Frequencies and Antibiotic Resistance , 2000, Antimicrobial Agents and Chemotherapy.

[155]  K. Poole,et al.  Role of the acetyltransferase AAC(6')-Iz modifying enzyme in aminoglycoside resistance in Stenotrophomonas maltophilia. , 2003, The Journal of antimicrobial chemotherapy.

[156]  H. B. Woodruff,et al.  The Soil as a Source of Microorganisms Antagonistic to Disease-Producing Bacteria , 1940, Journal of bacteriology.

[157]  M. Struelens,et al.  Genome macrorestriction analysis of diversity and variability of Pseudomonas aeruginosa strains infecting cystic fibrosis patients , 1993, Journal of clinical microbiology.

[158]  R. Hancock,et al.  The sensor kinase PhoQ mediates virulence in Pseudomonas aeruginosa. , 2009, Microbiology.

[159]  D. Haas,et al.  Impact of quorum sensing on fitness of Pseudomonas aeruginosa. , 2006, International journal of medical microbiology : IJMM.

[160]  M. Ziman,et al.  Phenotype Microarray Profiling of Staphylococcus aureus menD and hemB Mutants with the Small-Colony-Variant Phenotype , 2006, Journal of bacteriology.

[161]  K. Poole,et al.  Influence of the MexAB-OprM Multidrug Efflux System on Quorum Sensing in Pseudomonas aeruginosa , 1998, Journal of bacteriology.

[162]  M. Vulić,et al.  Role of Global Regulators and Nucleotide Metabolism in Antibiotic Tolerance in Escherichia coli , 2008, Antimicrobial Agents and Chemotherapy.

[163]  F. Rojo,et al.  Structure of Pseudomonas aeruginosa Populations Analyzed by Single Nucleotide Polymorphism and Pulsed-Field Gel Electrophoresis Genotyping , 2004, Journal of bacteriology.

[164]  D. Andersson,et al.  Mechanism and Fitness Costs of PR-39 Resistance in Salmonella enterica Serovar Typhimurium LT2 , 2008, Antimicrobial Agents and Chemotherapy.

[165]  J. Collins,et al.  Mistranslation of Membrane Proteins and Two-Component System Activation Trigger Antibiotic-Mediated Cell Death , 2008, Cell.

[166]  G. Dougan,et al.  Role of hns in the virulence phenotype of pathogenic salmonellae , 1994, Molecular microbiology.

[167]  Fernando Baquero,et al.  Predicting antibiotic resistance , 2007, Nature Reviews Microbiology.

[168]  N. Gotoh,et al.  Pseudomonas aeruginosa Reveals High Intrinsic Resistance to Penem Antibiotics: Penem Resistance Mechanisms and Their Interplay , 2001, Antimicrobial Agents and Chemotherapy.

[169]  S. Cole,et al.  The Ser/Thr Protein Kinase PknB Is Essential for Sustaining Mycobacterial Growth , 2006, Journal of bacteriology.

[170]  P. Stewart,et al.  Spatial Patterns of DNA Replication, Protein Synthesis, and Oxygen Concentration within Bacterial Biofilms Reveal Diverse Physiological States , 2007, Journal of bacteriology.

[171]  Jianping Xie,et al.  (p)ppGpp and drug resistance , 2010, Journal of cellular physiology.

[172]  E. López-Solanilla,et al.  The role of several multidrug resistance systems in Erwinia chrysanthemi pathogenesis. , 2006, Molecular plant-microbe interactions : MPMI.

[173]  T. Pitt,et al.  The high amino-acid content of sputum from cystic fibrosis patients promotes growth of auxotrophic Pseudomonas aeruginosa. , 1996, Journal of medical microbiology.

[174]  Samuel I. Miller,et al.  Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression. , 2009, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[175]  F. Rojo,et al.  The global regulator Crc modulates metabolism, susceptibility to antibiotics and virulence in Pseudomonas aeruginosa. , 2010, Environmental microbiology.

[176]  V. Pancholi,et al.  Modulation of Cell Wall Structure and Antimicrobial Susceptibility by a Staphylococcus aureus Eukaryote-Like Serine/Threonine Kinase and Phosphatase , 2009, Infection and Immunity.

[177]  R. Proctor,et al.  A site-directed Staphylococcus aureus hemB mutant is a small-colony variant which persists intracellularly , 1997, Journal of bacteriology.

[178]  P. Suci,et al.  Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms , 1994, Antimicrobial Agents and Chemotherapy.

[179]  A. Ginsberg Drugs in Development for Tuberculosis , 2010, Drugs.

[180]  F. Baquero,et al.  hns mutant unveils the presence of a latent haemolytic activity in Escherichia coli K‐12 , 1996, Molecular microbiology.

[181]  S. Leibler,et al.  Bacterial Persistence , 2005, Genetics.

[182]  M. Kalin,et al.  Interplay of efflux, impermeability, and AmpC activity contributes to cefuroxime resistance in clinical, non-ESBL-producing isolates of Escherichia coli. , 2009, Microbial drug resistance.

[183]  A. G. de la Campa,et al.  Fitness of Streptococcus pneumoniae Fluoroquinolone-Resistant Strains with Topoisomerase IV Recombinant Genes , 2007, Antimicrobial Agents and Chemotherapy.

[184]  W. V. van Wamel,et al.  Rat/MgrA, a Regulator of Autolysis, Is a Regulator of Virulence Genes in Staphylococcus aureus , 2005, Infection and Immunity.

[185]  P. Phibbs,et al.  The nucleotide sequence of the Pseudomonas aeruginosa pyrE-crc-rph region and the purification of the crc gene product , 1996, Journal of bacteriology.

[186]  S. Diggle,et al.  The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. , 2005, Microbiology.

[187]  S. Yokoyama,et al.  Structure of Pseudomonas aeruginosa Hfq protein. , 2005, Acta crystallographica. Section D, Biological crystallography.

[188]  S. Foster,et al.  CtaA of Staphylococcus aureus Is Required for Starvation Survival, Recovery, and Cytochrome Biosynthesis , 1999, Journal of bacteriology.

[189]  R. Proctor,et al.  Staphylococcus aureus small colony variants are induced by the endothelial cell intracellular milieu. , 1996, The Journal of infectious diseases.

[190]  R. Hancock,et al.  Novel Genetic Determinants of Low-Level Aminoglycoside Resistance in Pseudomonas aeruginosa , 2008, Antimicrobial Agents and Chemotherapy.

[191]  Q. C. Truong-Bolduc,et al.  Characterization of NorR Protein, a Multifunctional Regulator of norA Expression in Staphylococcus aureus , 2003, Journal of bacteriology.

[192]  M. Schuster,et al.  Social cheating in Pseudomonas aeruginosa quorum sensing , 2007, Proceedings of the National Academy of Sciences.

[193]  C. Pommerenke,et al.  Genomewide Identification of Genetic Determinants of Antimicrobial Drug Resistance in Pseudomonas aeruginosa , 2009, Antimicrobial Agents and Chemotherapy.

[194]  T. Hunter,et al.  Protein kinases and phosphatases: The Yin and Yang of protein phosphorylation and signaling , 1995, Cell.

[195]  R. McCune,et al.  FATE OF MYCOBACTERIUM TUBERCULOSIS IN MOUSE TISSUES AS DETERMINED BY THE MICROBIAL ENUMERATION TECHNIQUE , 1956, The Journal of experimental medicine.

[196]  J. Martínez,et al.  Clinical impact of the over-expression of efflux pump in nonfermentative Gram-negative bacilli, development of efflux pump inhibitors. , 2008, Current drug targets.

[197]  J. Vázquez-Boland,et al.  Glucose-1-phosphate utilization by Listeria monocytogenes is PrfA dependent and coordinately expressed with virulence factors , 1997, Journal of bacteriology.

[198]  W. Shafer,et al.  FarRRegulates the farAB-Encoded Efflux Pump of Neisseriagonorrhoeae via an MtrR RegulatoryMechanism , 2003, Journal of bacteriology.

[199]  Cost of cell–cell signalling in Pseudomonas aeruginosa: why it can pay to be signal-blind , 2006, Nature Reviews Microbiology.

[200]  D. Mossialos,et al.  Mutation or Overexpression of a Terminal Oxidase Leads to a Cell Division Defect and Multiple Antibiotic Sensitivity in Pseudomonas aeruginosa * , 2003, The Journal of Biological Chemistry.

[201]  Dipankar Chatterji,et al.  ppGpp: stringent response and survival. , 2006, Journal of microbiology.

[202]  Jeffrey H. Miller,et al.  Determination of Antibiotic Hypersensitivity among 4,000 Single-Gene-Knockout Mutants of Escherichia coli , 2008, Journal of bacteriology.

[203]  E. Sonnleitner,et al.  Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa , 2009, Proceedings of the National Academy of Sciences.

[204]  James J. Collins,et al.  Metabolite-Enabled Eradication of Bacterial Persisters by Aminoglycosides , 2011, Nature.

[205]  W. Goebel,et al.  Identification of a gene that positively regulates expression of listeriolysin, the major virulence factor of listeria monocytogenes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[206]  Jue D. Wang,et al.  Control of bacterial transcription, translation and replication by (p)ppGpp. , 2008, Current opinion in microbiology.

[207]  Eric Arnoult,et al.  The challenge of new drug discovery for tuberculosis , 2011, Nature.

[208]  J. Hinton H-NS mediates the silencing of laterally acquired genes in bacteria (vol 2, pg 746, 2006) , 2007 .

[209]  C. Pesavento,et al.  Bacterial nucleotide-based second messengers. , 2009, Current Opinion in Microbiology.

[210]  P. Stewart,et al.  Nonuniform spatial patterns of respiratory activity within biofilms during disinfection , 1995, Applied and environmental microbiology.

[211]  I. Massova,et al.  Kinship and Diversification of Bacterial Penicillin-Binding Proteins and β-Lactamases , 1998, Antimicrobial Agents and Chemotherapy.

[212]  J. Martínez,et al.  The Pseudomonas putida Crc Global Regulator Controls the Expression of Genes from Several Chromosomal Catabolic Pathways for Aromatic Compounds , 2004, Journal of bacteriology.

[213]  F. Rojo,et al.  The Pseudomonas putida Crc global regulator is an RNA binding protein that inhibits translation of the AlkS transcriptional regulator , 2007, Molecular microbiology.

[214]  M. Maciá,et al.  Chronic Pseudomonas aeruginosa infection in chronic obstructive pulmonary disease. , 2008, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[215]  Anne Kümmel,et al.  In silico genome-scale reconstruction and validation of the Staphylococcus aureus metabolic network. , 2005, Biotechnology and bioengineering.

[216]  I. Paulsen,et al.  Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria. , 1998, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[217]  A. Yamaguchi,et al.  Beta-lactam resistance modulated by the overexpression of response regulators of two-component signal transduction systems in Escherichia coli. , 2003, The Journal of antimicrobial chemotherapy.

[218]  S. Forst,et al.  Co‐regulation of motility, exoenzyme and antibiotic production by the EnvZ‐OmpR‐FlhDC‐FliA pathway in Xenorhabdus nematophila , 2006, Molecular microbiology.

[219]  J. Martínez,et al.  Stenotrophomonas maltophilia drug resistance. , 2009, Future microbiology.

[220]  Martin Eisenacher,et al.  Reporter Metabolite Analysis of Transcriptional Profiles of a Staphylococcus aureus Strain with Normal Phenotype and Its Isogenic hemB Mutant Displaying the Small-Colony-Variant Phenotype , 2006, Journal of bacteriology.

[221]  D. Andersson,et al.  Directed mutagenesis of Mycobacterium smegmatis 16S rRNA to reconstruct the in vivo evolution of aminoglycoside resistance in Mycobacterium tuberculosis , 2010, Molecular microbiology.

[222]  Gerald B. Pier,et al.  Lung Infections Associated with Cystic Fibrosis , 2002, Clinical Microbiology Reviews.

[223]  T. Mah,et al.  Involvement of a Novel Efflux System in Biofilm-Specific Resistance to Antibiotics , 2008, Journal of bacteriology.

[224]  K. Toman Bacterial persistence in leprosy. , 1981, International journal of leprosy and other mycobacterial diseases : official organ of the International Leprosy Association.

[225]  A F Goddard,et al.  Getting to the route of Helicobacter pylori treatment. , 1998, The Journal of antimicrobial chemotherapy.

[226]  J. Linares,et al.  Towards an ecological approach to antibiotics and antibiotic resistance genes. , 2009, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[227]  Roberto Kolter,et al.  Why are bacteria refractory to antimicrobials? , 2002, Current opinion in microbiology.

[228]  R. Hancock,et al.  Role of Pseudomonas aeruginosa PhoP-phoQ in resistance to antimicrobial cationic peptides and aminoglycosides. , 2000, Microbiology.

[229]  F. Baquero,et al.  Factors determining resistance to β-lactam combined with β-lactamase inhibitors in Escherichia coli , 1991 .

[230]  Eduardo A. Groisman,et al.  The Pleiotropic Two-Component Regulatory System PhoP-PhoQ , 2001, Journal of bacteriology.

[231]  C. van Delden,et al.  Overexpression of the MexEF-OprN Multidrug Efflux System Affects Cell-to-Cell Signaling in Pseudomonas aeruginosa , 2001, Journal of bacteriology.

[232]  S. Forst,et al.  Signal transduction by the EnvZ-OmpR phosphotransfer system in bacteria. , 1994, Research in microbiology.

[233]  S. Leibler,et al.  Bacterial Persistence as a Phenotypic Switch , 2004, Science.

[234]  D. Andersson The biological cost of mutational antibiotic resistance: any practical conclusions? , 2006, Current opinion in microbiology.

[235]  M. Surette,et al.  Swarm-Cell Differentiation in Salmonellaenterica Serovar Typhimurium Results in Elevated Resistance to Multiple Antibiotics , 2003, Journal of bacteriology.

[236]  A. Yamaguchi,et al.  H-NS Modulates Multidrug Resistance of Salmonella enterica Serovar Typhimurium by Repressing Multidrug Efflux Genes acrEF , 2009, Antimicrobial Agents and Chemotherapy.

[237]  K. Lewis,et al.  Specialized Persister Cells and the Mechanism of Multidrug Tolerance in Escherichia coli , 2004, Journal of bacteriology.

[238]  Samy O Meroueh,et al.  Structural aspects for evolution of beta-lactamases from penicillin-binding proteins. , 2003, Journal of the American Chemical Society.