Association Study and Fine-Mapping Major Histocompatibility Complex Analysis of Pemphigus Vulgaris in a Han Chinese Population.

[1]  D. Popadic,et al.  Pemphigus vulgaris and pemphigus foliaceus determined by CD86 and CTLA4 polymorphisms. , 2017, Clinics in dermatology.

[2]  P. Dundr,et al.  Expression of Glut-1 in Malignant Melanoma and Melanocytic Nevi: an Immunohistochemical Study of 400 Cases , 2017, Pathology & Oncology Research.

[3]  O. Sarig,et al.  Identification of a Functional Risk Variant for Pemphigus Vulgaris in the ST18 Gene , 2016, PLoS genetics.

[4]  W. Robinson,et al.  Multiplexed autoantigen microarrays identify HLA as a key driver of anti-desmoglein and -non-desmoglein reactivities in pemphigus , 2016, Proceedings of the National Academy of Sciences.

[5]  M. Kubo,et al.  CRTAM determines the CD4+ cytotoxic T lymphocyte lineage , 2016, The Journal of experimental medicine.

[6]  S. Bang,et al.  Construction and Application of a Korean Reference Panel for Imputing Classical Alleles and Amino Acids of Human Leukocyte Antigen Genes , 2014, PloS one.

[7]  A. Schmieder,et al.  HLA-DQB1 gene and pemphigus vulgaris in patients with Mid-East origin. , 2014, Journal of dermatological science.

[8]  Vinod Chandran,et al.  Fine Mapping Major Histocompatibility Complex Associations in Psoriasis and Its Clinical Subtypes , 2014, American journal of human genetics.

[9]  Y. Okada,et al.  Risk for ACPA-positive rheumatoid arthritis is driven by shared HLA amino acid polymorphisms in Asian and European populations. , 2014, Human molecular genetics.

[10]  R. Weil Does Antigen Masking by Ubiquitin Chains Protect from the Development of Autoimmune Diseases? , 2014, Front. Immunol..

[11]  Hong Liu,et al.  Lack of association between the single nucleotide polymorphism of ST18 and pemphigus in Chinese population , 2014, The Journal of dermatology.

[12]  N. Carpino,et al.  Insights into the suppressor of T‐cell receptor (TCR) signaling‐1 (Sts‐1)‐mediated regulation of TCR signaling through the use of novel substrate‐trapping Sts‐1 phosphatase variants , 2014, The FEBS journal.

[13]  D. Sauder,et al.  A Possible Role for CD8+ T Lymphocytes in the Cell-Mediated Pathogenesis of Pemphigus Vulgaris , 2013, Mediators of inflammation.

[14]  M. Peters,et al.  Systematic identification of trans eQTLs as putative drivers of known disease associations , 2013, Nature Genetics.

[15]  K. Humphreys,et al.  Coding variants at hexa-allelic amino acid 13 of HLA-DRB1 explain independent SNP associations with follicular lymphoma risk. , 2013, American journal of human genetics.

[16]  Qiang Yu,et al.  Protein tyrosine phosphatase UBASH3B is overexpressed in triple-negative breast cancer and promotes invasion and metastasis , 2013, Proceedings of the National Academy of Sciences.

[17]  Buhm Han,et al.  Imputing Amino Acid Polymorphisms in Human Leukocyte Antigens , 2013, PloS one.

[18]  C. Rotimi,et al.  Transferability and Fine Mapping of genome-wide associated loci for lipids in African Americans , 2012, BMC Medical Genetics.

[19]  S. Rosset,et al.  Population-specific association between a polymorphic variant in ST18, encoding a pro-apoptotic molecule, and pemphigus vulgaris. , 2012, The Journal of investigative dermatology.

[20]  Robert M. Plenge,et al.  Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis , 2011, Nature Genetics.

[21]  Yu-Huei Huang,et al.  Incidence, mortality, and causes of death of patients with pemphigus in Taiwan: a nationwide population-based study. , 2012, The Journal of investigative dermatology.

[22]  A. Yoshimura,et al.  Desmoglein 3-specific CD4+ T cells induce pemphigus vulgaris and interface dermatitis in mice. , 2011, The Journal of clinical investigation.

[23]  J. Kalil,et al.  HLA-DRB1*04:02, DRB1*08:04 and DRB1*14 alleles associated to pemphigus vulgaris in southeastern Brazilian population. , 2011, Tissue antigens.

[24]  Katherine C. Melonakos,et al.  A globally available internet-based patient survey of pemphigus vulgaris: epidemiology and disease characteristics. , 2011, Dermatologic clinics.

[25]  A. Sinha The genetics of pemphigus. , 2011, Dermatologic clinics.

[26]  A. Sinha,et al.  PTPN22 1858T is not a risk factor for North American Pemphigus vulgaris , 2011, Experimental dermatology.

[27]  Michael Boehnke,et al.  LocusZoom: regional visualization of genome-wide association scan results , 2010, Bioinform..

[28]  P. Visscher,et al.  A versatile gene-based test for genome-wide association studies. , 2010, American journal of human genetics.

[29]  A. Akar,et al.  Association of human leukocyte antigen class II alleles with pemphigus vulgaris in a Turkish population , 2010, The Journal of dermatology.

[30]  H. Grosse-wilde,et al.  TNF‐α and IL‐10 gene polymorphisms show a weak association with pemphigus vulgaris in the Slovak population , 2010, Journal of the European Academy of Dermatology and Venereology : JEADV.

[31]  Beth Cobb,et al.  Identification of novel genetic susceptibility loci for Behçet's disease using a genome-wide association study , 2009, Arthritis research & therapy.

[32]  N. Rezaei,et al.  HLA Class II (DRB, DQA1 and DQB1) Allele and Haplotype Frequencies in the Patients with Pemphigus Vulgaris , 2009, Journal of Clinical Immunology.

[33]  A. Tsygankov,et al.  TULA proteins regulate activity of the protein tyrosine kinase Syk , 2008, Journal of cellular biochemistry.

[34]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[35]  Sebastian A. Wagner,et al.  Suppressor of T‐cell receptor signalling 1 and 2 differentially regulate endocytosis and signalling of receptor tyrosine kinases , 2007, FEBS letters.

[36]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[37]  N. Nassar,et al.  A phosphatase activity of Sts-1 contributes to the suppression of TCR signaling. , 2007, Molecular cell.

[38]  D. Siegel,et al.  Targeting pemphigus autoantibodies through their heavy-chain variable region genes. , 2007, The Journal of investigative dermatology.

[39]  D. Reich,et al.  Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.

[40]  R. Loewenthal,et al.  Pemphigus vulgaris is associated with the transporter associated with antigen processing (TAP) system. , 2005, Human immunology.

[41]  J. Bystryn,et al.  Pemphigus , 2005, The Lancet.

[42]  H. Mouquet,et al.  Genetic factors in pemphigus. , 2005, Journal of autoimmunity.

[43]  Mark Daly,et al.  Haploview: analysis and visualization of LD and haplotype maps , 2005, Bioinform..

[44]  R. Loewenthal,et al.  The immunogenetics of pemphigus vulgaris. , 2005, Autoimmunity reviews.

[45]  M. Petzl-Erler,et al.  Cytokine gene polymorphisms in endemic pemphigus foliaceus: a possible role for IL6 variants. , 2004, Cytokine.

[46]  R. Loewenthal,et al.  HLA-G is associated with pemphigus vulgaris in Jewish patients. , 2004, Human immunology.

[47]  M. Hertl,et al.  T-cellular autoimmunity against desmogleins in pemphigus, an autoantibody-mediated bullous disorder of the skin. , 2003, Autoimmunity reviews.

[48]  W. Uter,et al.  Dichotomy of Autoreactive Th1 and Th2 Cell Responses to Desmoglein 3 in Patients with Pemphigus Vulgaris (PV) and Healthy Carriers of PV-Associated HLA Class II Alleles1 , 2003, The Journal of Immunology.

[49]  J. Roujeau,et al.  HLA class II polymorphism contributes to specify desmoglein derived peptides in pemphigus vulgaris and pemphigus foliaceus. , 2000, Journal of autoimmunity.

[50]  H. Mcdevitt,et al.  Autoimmune diseases: the failure of self tolerance. , 1990, Science.