Comparison of Multiobjective Evolutionary Algorithms: Empirical Results

In this paper, we provide a systematic comparison of various evolutionary approaches to multiobjective optimization using six carefully chosen test functions. Each test function involves a particular feature that is known to cause difficulty in the evolutionary optimization process, mainly in converging to the Pareto-optimal front (e.g., multimodality and deception). By investigating these different problem features separately, it is possible to predict the kind of problems to which a certain technique is or is not well suited. However, in contrast to what was suspected beforehand, the experimental results indicate a hierarchy of the algorithms under consideration. Furthermore, the emerging effects are evidence that the suggested test functions provide sufficient complexity to compare multiobjective optimizers. Finally, elitism is shown to be an important factor for improving evolutionary multiobjective search.

[1]  John M. Chambers,et al.  Graphical Methods for Data Analysis , 1983 .

[2]  Michael P. Fourman,et al.  Compaction of Symbolic Layout Using Genetic Algorithms , 1985, ICGA.

[3]  J. D. Schaffer,et al.  Multiple Objective Optimization with Vector Evaluated Genetic Algorithms , 1985, ICGA.

[4]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[5]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[6]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[7]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[8]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[9]  Prabhat Hajela,et al.  Genetic search strategies in multicriterion optimal design , 1991 .

[10]  Jeffrey Horn,et al.  Multiobjective Optimization Using the Niched Pareto Genetic Algorithm , 1993 .

[11]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[12]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[13]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[14]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[15]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[16]  Peter J. Fleming,et al.  Multiobjective genetic algorithms made easy: selection sharing and mating restriction , 1995 .

[17]  Hajime Kita,et al.  Multi-objective optimization by genetic algorithms: a review , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[18]  Ernest S. Kuh,et al.  Design space exploration using the genetic algorithm , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[19]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[20]  Hisao Ishibuchi,et al.  Multi-objective genetic local search algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[21]  Peter J. Fleming,et al.  On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers , 1996, PPSN.

[22]  Manuel Valenzuela-Rendón,et al.  A Non-Generational Genetic Algorithm for Multiobjective Optimization , 1997, ICGA.

[23]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[24]  David B. Fogel,et al.  Evolutionary algorithms in theory and practice , 1997, Complex.

[25]  António Gaspar-Cunha,et al.  Use of Genetic Algorithms in Multicriteria Optimization to Solve Industrial Problems , 1997, ICGA.

[26]  G. Rudolph On a multi-objective evolutionary algorithm and its convergence to the Pareto set , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[27]  Lothar Thiele,et al.  An evolutionary algorithm for multiobjective optimization: the strength Pareto approach , 1998 .

[28]  Shigeru Obayashi,et al.  Niching and Elitist Models for MOGAs , 1998, PPSN.

[29]  Geoffrey T. Parks,et al.  Selective Breeding in a Multiobjective Genetic Algorithm , 1998, PPSN.

[30]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[31]  Marco Laumanns,et al.  A Spatial Predator-Prey Approach to Multi-objective Optimization: A Preliminary Study , 1998, PPSN.

[32]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[33]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[34]  David A. Van Veldhuizen,et al.  Evolutionary Computation and Convergence to a Pareto Front , 1998 .

[35]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[36]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[37]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[38]  Carlos A. Coello Coello,et al.  A Micro-Genetic Algorithm for Multiobjective Optimization , 2001, EMO.