Cubic Stuffed-Diamond Semiconductors LiCu3TiQ4 (Q = S, Se, and Te).

Lithium chalcogenides have been understudied, owing to the difficulty in managing the chemical reactivity of lithium. These materials are of interest as potential ion conductors and thermal neutron detectors. In this study, we describe three new cubic lithium copper chalcotitanates that crystallize in the P4̅3m space group. LiCu3TiS4, a = 5.5064(6) Å, and LiCu3TiSe4, a = 5.7122(7) Å, represent two members of a new stuffed diamond-type crystal structure, while LiCu3TiTe4, a = 5.9830(7) Å crystallized into a similar structure exhibiting lithium and copper mixed occupancy. These structures can be understood as hybrids of the zinc-blende and sulvanite structure types. In situ powder X-ray diffraction was utilized to construct a "panoramic" reaction map for the preparation of LiCu3TiTe4, facilitating the design of a rational synthesis and uncovering three new transient phases. LiCu3TiS4 and LiCu3TiSe4 are thermally stable up to 1000 °C under vacuum, while LiCu3TiTe4 partially decomposes when slowly cooled to 400 °C. Density functional theory calculations suggest that these compounds are indirect band gap semiconductors. The measured work functions are 4.77(5), 4.56(5), and 4.69(5) eV, and the measured band gaps are 2.23(5), 1.86(5), and 1.34(5) eV for the S, Se, and Te analogues, respectively.

[1]  M. Kanatzidis,et al.  In Situ Mechanistic Studies of Two Divergent Synthesis Routes Forming the Heteroanionic BiOCuSe. , 2021, Journal of the American Chemical Society.

[2]  M. Kanatzidis,et al.  Demonstration of Energy-Resolved γ-Ray Detection at Room Temperature by the CsPbCl3 Perovskite Semiconductor. , 2021, Journal of the American Chemical Society.

[3]  M. Kanatzidis,et al.  Mechanistic insight of KBiQ2 (Q = S, Se) using panoramic synthesis towards synthesis-by-design , 2020, Chemical science.

[4]  C. Singh,et al.  Ultralow lattice thermal conductivity at room temperature in Cu4TiSe4. , 2020, Angewandte Chemie.

[5]  E. Haque Effect of electron-phonon scattering, pressure and alloying on the thermoelectric performance of TmCu$_3$Ch$_4$ (Tm=V, Nb, Ta; Ch=S, Se, Te) , 2020, 2010.08461.

[6]  Rahmi O. Pak,et al.  Direct thermal neutron detection by the 2D semiconductor 6LiInP2Se6 , 2020, Nature.

[7]  Yongsheng Zhang,et al.  Promising thermoelectric materials of Cu3VX4 (X=S, Se, Te): A Cu-V-X framework plus void tunnels , 2019, International Journal of Modern Physics C.

[8]  M. Kanatzidis,et al.  Nonlinear Band Gap Tunability in Selenium–Tellurium Alloys and Its Utilization in Solar Cells , 2019, ACS Energy Letters.

[9]  A. Kudo,et al.  Cu3 MS4 (M=V, Nb, Ta) and its Solid Solutions with Sulvanite Structure for Photocatalytic and Photoelectrochemical H2 Evolution under Visible-Light Irradiation. , 2019, ChemSusChem.

[10]  Taehoon Kim,et al.  Lithium-ion batteries: outlook on present, future, and hybridized technologies , 2019, Journal of Materials Chemistry A.

[11]  A. Zunger Beware of plausible predictions of fantasy materials , 2019, Nature.

[12]  W. Macyk,et al.  How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. , 2018, The journal of physical chemistry letters.

[13]  M. Kanatzidis,et al.  Stoichiometric Effects on the Photoelectric Properties of LiInSe2 Crystals for Neutron Detection , 2018 .

[14]  G. J. Snyder,et al.  Quaternary Pavonites A1+xSn2-xBi5+xS10 (A+ = Li+, Na+): Site Occupancy Disorder Defines Electronic Structure. , 2018, Inorganic chemistry.

[15]  M. Kanatzidis,et al.  Panoramic Synthesis as an Effective Materials Discovery Tool: The System Cs/Sn/P/Se as a Test Case. , 2017, Journal of the American Chemical Society.

[16]  A. Kudo,et al.  Development of Various Metal Sulfide Photocatalysts Consisting of d0, d5, and d10 Metal Ions for Sacrificial H2 Evolution under Visible Light Irradiation , 2017 .

[17]  I. Samuel,et al.  Probing the energy levels of perovskite solar cells via Kelvin probe and UV ambient pressure photoemission spectroscopy. , 2016, Physical chemistry chemical physics : PCCP.

[18]  C. Felser,et al.  Observation of unusual topological surface states in half-Heusler compounds LnPtBi (Ln=Lu, Y) , 2016, Nature Communications.

[19]  D. Yamashita,et al.  In situ measurements of change in work function of Pt, Pd and Au surfaces during desorption of oxygen by using photoemission yield spectrometer in air , 2016 .

[20]  Muratahan Aykol,et al.  The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies , 2015 .

[21]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[22]  O. Pavlosiuk,et al.  Shubnikov - de Haas oscillations, weak antilocalization effect and large linear magnetoresistance in the putative topological superconductor LuPdBi , 2015, Scientific Reports.

[23]  T. Fässler,et al.  Fully and partially Li-stuffed diamond polytypes with Ag-Ge structures: Li2AgGe and Li2.53AgGe2. , 2015, Inorganic chemistry.

[24]  G. Joshi,et al.  NbFeSb-based p-type half-Heuslers for power generation applications , 2014 .

[25]  Yung-Jin Hu,et al.  In situ studies of a platform for metastable inorganic crystal growth and materials discovery , 2014, Proceedings of the National Academy of Sciences.

[26]  Y. Pan,et al.  Superconductivity and magnetic order in the noncentrosymmetric half-Heusler compound ErPdBi , 2013, 1310.4592.

[27]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[28]  Gang Chen,et al.  Thermoelectric Property Study of Nanostructured p‐Type Half‐Heuslers (Hf, Zr, Ti)CoSb0.8Sn0.2 , 2013 .

[29]  R. Cabella,et al.  Weissite from Gambatesa mine, Val Graveglia, Liguria, Italy: occurrence, composition and determination of the crystal structure , 2013, Mineralogical Magazine.

[30]  Brian H. Toby,et al.  GSAS‐II: the genesis of a modern open‐source all purpose crystallography software package , 2013 .

[31]  T. Fässler,et al.  Lithium-stuffed diamond polytype Zn-Tt structures (Tt = Sn, Ge): the two lithium-zinc-tetrelides Li3Zn2Sn4 and Li2ZnGe3. , 2013, Inorganic chemistry.

[32]  L. Taillefer,et al.  Superconductivity in the noncentrosymmetric half-Heusler compound LuPtBi: A candidate for topological superconductivity , 2013, 1302.1943.

[33]  Christopher M Wolverton,et al.  Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries , 2012 .

[34]  M. Kanatzidis,et al.  Tl2Hg3Q4 (Q = S, Se, and Te): High-Density, Wide-Band-Gap Semiconductors , 2011 .

[35]  N. Butch,et al.  Superconductivity in the topological semimetal YPtBi , 2011, 1109.0979.

[36]  Claudia Felser,et al.  Simple rules for the understanding of Heusler compounds , 2011 .

[37]  A. Caruso The physics of solid-state neutron detector materials and geometries , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[38]  Jingfeng Li,et al.  Synthesis and thermoelectric properties of fine-grained FeVSb system half-Heusler compound polycrystals with high phase purity , 2010 .

[39]  T. Takabatake,et al.  Thermodynamic and transport properties of the non-centrosymmetric superconductor LaBiPt , 2008 .

[40]  P. Rogl,et al.  Magnetic, thermodynamic, and electrical transport properties of ternary equiatomic ytterbium compounds YbTM (T=transition metal, M=Sn and Bi) , 1999 .

[41]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[42]  R. Hoffmann,et al.  The TiNiSi Family of Compounds: Structure and Bonding , 1998 .

[43]  Y. Seropegin,et al.  Structural and magnetic properties of new RRuGe compounds , 1998 .

[44]  F. Canepa,et al.  Physical properties of GdNiIn , 1998 .

[45]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[46]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[47]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[48]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[49]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[50]  H. G. Smith,et al.  Lattice dynamics and the diffuse phase transition of lithium sulphide investigated by coherent neutron scattering , 1991 .

[51]  P. T. Cunningham,et al.  Phase Equilibria in Lithium‐Chalcogen Systems II . Lithium‐Sulfur , 1971 .

[52]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[53]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[54]  E. Zintl,et al.  Gitterstruktur der Oxyde, Sulfide, Selenide und Telluride des Lithiums, Natriums und Kaliums , 1934, Zeitschrift für Elektrochemie und angewandte physikalische Chemie.

[55]  L. Pauling,et al.  The Crystal Structure of Sulvanite, Cu3VS4 , 1933 .

[56]  Jun Luo,et al.  Thermoelectric properties of p-Type Cu3VSe4 with high seebeck coefficients , 2021 .

[57]  A. Mewis CaAgP und CaAgAs -Zwei Verbindungen mit Fe2P-Struktur/CaAgP and CaAgAs -Two Compounds with the Fe2P-Structure , 1979 .