Brittle Failure of Ice

Ice exhibits either ductile or brittle behavior, depending upon the conditions under which it is loaded. Glaciers, for instance, are loaded by gravity, under deviatoric stresses of ~0.1 MPa or lower. At temperatures of interest, they flow through dislocation creep at strain rates of the order of 10−9 s−1 or lower (Patterson 1994). Sheets of sea ice—another terrestrially important ice feature—are loaded predominantly by wind, under global compressive stresses similar in magnitude to the shear stresses within glaciers (Richter-Menge and Elder 1998). These bodies deform through a combination of creep and fracture, the latter process manifested by oriented leads or open cracks and by compressive shear faults which often form as conjugate sets that traverse a large fraction of the Arctic Basin (Kwok 1999; Schulson 2002). The cold, icy crust of Europa, an extraterrestrial feature which may shield an ocean beneath within which a form of life may exist or may once have existed (Reynolds et al. 1987; Hoppa et al. 1999; Pappalardo et al. 1999; Greenberg et al. 2000; Kargel et al. 2000), is loaded by the motion of diurnal tides and by non-synchronous rotation (Greenberg and Weidenschilling 1984). The crust deforms in a brittle manner, as evident from the networks of cracks that lace through it (Greeley et al. 2000). Of the two kinds of ice deformation, creep is probably the better known by readers of the geological and geophysical literature, and is certainly the more fully explored and better understood. The interested reader may wish to consult a number of excellent reviews of the subject (e.g., see Duval et al. 1983; Weertman 1983; Durham and Stern 2001). Fracture, in comparison, has only recently been systematically examined. The motivation with respect to terrestrial mechanics (Schulson 2001) comes largely …

[1]  S. Nemat-Nasser,et al.  Brittle failure in compression: splitting faulting and brittle-ductile transition , 1986, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[2]  William D. Hibler,et al.  The fracture of ice on scales large and small: Arctic leads and wing cracks , 1991, Journal of Glaciology.

[3]  M. Friedman,et al.  Microscopic feather fractures in the faulting process , 1976 .

[4]  E. Schulson,et al.  Grain-boundary sliding and crack nucleation in ice , 2000 .

[5]  R. Hill The mathematical theory of plasticity , 1950 .

[6]  Mark Kachanov,et al.  On Modelling of “Winged” Cracks Forming Under Compression , 1996 .

[7]  E. Schulson,et al.  Wing cracks and brittle compressive fracture , 1990 .

[8]  E. Schulson,et al.  A MICROMECHANICAL VIEW OF THE FRACTURE TOUGHNESS OF ICE , 1987 .

[9]  T. Hughes Calving Ice Walls , 1989, Annals of Glaciology.

[10]  C P McKay,et al.  Europa, tidally heated oceans, and habitable zones around giant planets. , 1987, Advances in space research : the official journal of the Committee on Space Research.

[11]  Michael Dudley,et al.  Dislocation-grain boundary interactions in ice crystals , 1995 .

[12]  L. Arnaud,et al.  Deformation and recrystallization processes of ice from polar ice sheets , 2000, Annals of Glaciology.

[13]  J. Rice,et al.  Suppression of Cavity Formation in Ceramics: Prospects for Superplasticity , 1980 .

[14]  Richard J. Greenberg,et al.  Habitability of Europa's crust: The role of tidal‐tectonic processes , 2000 .

[15]  R. Rispoli Stress fields about strike-slip faults inferred from stylolites and tension gashes , 1981 .

[16]  P. Hobbs,et al.  An experimental determination of the surface energies of ice , 1969 .

[17]  L. S. Costin,et al.  A microcrack model for the deformation and failure of brittle rock , 1983 .

[18]  D. Lockner,et al.  Nucleation and growth of faults in brittle rocks , 1994 .

[19]  E. Schulson,et al.  The effect of confinement on the brittle compressive fracture of ice , 1991, Annals of Glaciology.

[20]  T. Butkovich Ultimate strength of ice , 1954 .

[21]  Eric Rignot,et al.  Identification of sea ice types in spaceborne synthetic aperture radar data , 1992 .

[22]  E. Schulson,et al.  An analysis of the brittle to ductile transition in polycrystalline ice under tension , 1979 .

[23]  W. Hibler Sea ice fracturing on the large scale , 2001 .

[24]  Two-dimensional deformation patterns in sea ice , 1988 .

[25]  Paul Segall,et al.  Nucleation and growth of strike slip faults in granite , 1983 .

[26]  Guozhu Zhao,et al.  Analysis of minor fractures associated with joints and faulted joints , 1991 .

[27]  S. D. Hallam,et al.  A STUDY OF CRACKS IN POLYCRYSTALLINE ICE UNDER UNIAXIAL COMPRESSION , 1987 .

[28]  M. Paterson Experimental Rock Deformation: The Brittle Field , 1978 .

[29]  James R. Rice,et al.  Tensile Cracks in Creeping Solids , 1980 .

[30]  J. Knott,et al.  Fundamentals of Fracture Mechanics , 2008 .

[31]  Jean-Pierre Petit,et al.  Can natural faults propagate under Mode II conditions , 1988 .

[32]  Malcolm Mellor,et al.  Deformation and Fracture of Ice Under Uniaxial Stress , 1972, Journal of Glaciology.

[33]  C. Renshaw,et al.  Non‐linear rate dependent deformation under compression due to state variable friction , 1998 .

[34]  S. D. Hallam,et al.  The failure of brittle solids containing small cracks under compressive stress states , 1986 .

[35]  J. Rice,et al.  CONDITIONS FOR THE LOCALIZATION OF DEFORMATION IN PRESSURE-SENSITIVE DILATANT MATERIALS , 1975 .

[36]  E. Schulson,et al.  The Fracture Toughness of Ice Over a Range of Grain Sizes , 1988 .

[37]  D. Lockner,et al.  The role of microcracking in shear-fracture propagation in granite , 1995 .

[38]  David M. Cole,et al.  Reversed direct-stress testing of ice: Initial experimental results and analysis , 1990 .

[39]  E. Schulson,et al.  The growth of wing cracks and the brittle compressive failure of ice , 1991 .

[40]  C. Shearwood,et al.  The velocity of dislocations in ice , 1991 .

[41]  David M. Cole,et al.  Strain-Rate and Grain‒Size Effects in Ice , 1987, Journal of Glaciology.

[42]  Walter B. Tucker,et al.  Stress measurements in drifting pack ice , 1992 .

[43]  R. C. Picu,et al.  Observations of crack nucleation in columnar ice due to grain boundary sliding , 1995 .

[44]  E. Schulson,et al.  The brittle compressive fracture of ice , 1990 .

[45]  J. Overland,et al.  Arctic sea ice as a granular plastic , 1998 .

[46]  M. Kachanov,et al.  A microcrack model of rock inelasticity part II: Propagation of microcracks , 1982 .

[47]  Clark R. Chapman,et al.  Does Europa have a subsurface ocean? Evaluation of the geological evidence , 1999 .

[48]  E. Schulson,et al.  The ductile-to-brittle transition and ductile failure envelopes of orthotropic ice under biaxial compression , 1995 .

[49]  E. M. Schulson,et al.  Brittle compressive failure of salt-water columnar ice under biaxial loading , 1994 .

[50]  E. Schulson,et al.  On the strain-rate sensitivity of columnar ice , 1997 .

[51]  E. Schulson,et al.  The cracking of ice during rapid unloading , 1994 .

[52]  J. P. Dempsey,et al.  Scale effects on the in-situ tensile strength and fracture of ice. Part II: First-year sea ice at Resolute, N.W.T. , 1999 .

[53]  R. Armstrong,et al.  The Physics of Glaciers , 1981 .

[54]  M. F. Ashby,et al.  Rate-controlling processes in the creep of polycrystalline ice , 1983 .

[55]  David D. Pollard,et al.  Mechanics of slip and fracture along small faults and simple strike‐slip fault zones in granitic rock , 1989 .

[56]  B. R. Tufts,et al.  Formation of cycloidal features on Europa. , 1999, Science.

[57]  E. Schulson,et al.  The brittle compressive failure of fresh-water columnar ice under biaxial loading , 1993 .

[58]  E. Schulson,et al.  Ductile compressive failure of columnar saline ice under triaxial loading , 1998 .

[59]  M. D. Thouless,et al.  The edge cracking and spalling of brittle plates , 1987 .

[60]  R. Kwok,et al.  Ice thickness derived from high-resolution radar imagery , 1999 .

[61]  Ron Lindsay,et al.  Arctic sea ice leads from advanced very high resolution radiometer images , 1995 .

[62]  R. Whitworth,et al.  Dislocation motion in ice: A study by synchrotron X-ray topography , 1988 .

[63]  D. Sodhi Crushing failure during ice–structure interaction , 2001 .

[64]  Ola M. Johannessen,et al.  The Arctic's shrinking sea ice , 1995, Nature.

[65]  E. Schulson,et al.  Brittle failure of columnar saline ice under triaxial compression , 1997 .

[66]  E. Schulson,et al.  The nucleation of microcracks in ice cubes compressed equally on all boundaries , 1996 .

[67]  J. Richter-Menge,et al.  Confined Compressive Strength of Horizontal First-Year Sea Ice Samples , 1991 .

[68]  R. Frederking Plane-Strain Compressive Strength of Columnar-Grained and Granular-Snow Ice , 1977 .

[69]  E. Schulson,et al.  The failure of fresh-water granular ice under multiaxial compressive loading , 1995 .

[70]  Wilfrid A. Nixon,et al.  The tensile strength of cracked ice , 1989 .

[71]  J. K. Lewis A conceptual model of the impact of flaws on the stress state of sea ice , 1995 .

[72]  E. Schulson,et al.  The brittle compressive failure of orthotropic ice under triaxial loading , 1999 .

[73]  N. K. Sinha Constant strain- and stress-rate compressive strength of columnar-grained ice , 1982 .

[74]  J. Weiss,et al.  Fracturing of ice under compression creep as revealed by a multifractal analysis , 1998 .

[75]  R. Lebensohn,et al.  Modelling viscoplastic behavior of anisotropic polycrystalline ice with a self-Consistent approach , 1997 .

[76]  K. F. Jones,et al.  The tensile strength of first-year sea ice , 1993, Journal of Glaciology.

[77]  J. Weertman Creep Deformation of Ice , 1983 .

[78]  S. Weidenschilling,et al.  How fast do Galilean satellites spin , 1984 .

[79]  W. F. Brace,et al.  A note on brittle crack growth in compression , 1963 .

[80]  E. Schulson,et al.  On the ductile-to-brittle transition in ice under compression , 1993 .

[81]  J. C. Jaeger,et al.  Fundamentals of rock mechanics , 1969 .

[82]  W. Shen,et al.  Fracture Toughness of Bohai Bay Sea Ice , 1988 .

[83]  J. Barnby,et al.  Crack Nucleation in Crystalline Solids , 1967 .

[84]  B. Lawn,et al.  Role of grain size in the strength and R-curve properties of alumina , 1990 .

[85]  D. Pollard,et al.  Relations between left-lateral strike-slip faults and right-lateral monoclinal kink bands in granodiorite, Mt. Abbot quadrangle, Sierra Nevada, California , 1986 .

[86]  E. Schulson,et al.  Failure of columnar saline ice under biaxial compression: Failure envelopes and the brittle‐to‐ductile transition , 1995 .

[87]  John R. Marko,et al.  Rectilinear leads and internal motions in the ice pack of the western Arctic Ocean , 1977 .

[88]  Kenneth L. Tanaka,et al.  Geologic mapping of Europa , 2000 .

[89]  David M. Cole,et al.  The microstructure of ice and its influence on mechanical properties , 2001 .

[90]  H. C. Heard,et al.  The Brittle-ductile transition in rocks : the Heard volume , 1990 .

[91]  J. Richter-Menge,et al.  Characteristics of pack ice stress in the Alaskan Beaufort Sea , 1998 .

[92]  M. Rist,et al.  High-Stress Ice Fracture and Friction , 1997 .

[93]  Jeffrey S. Kargel,et al.  Europa's Crust and Ocean: Origin, Composition, and the Prospects for Life , 2000 .

[94]  H. Oerter,et al.  Experimental and theoretical fracture mechanics applied to Antarctic ice fracture and surface crevassing , 1999 .

[95]  Y. Fahmy,et al.  Plastic deformation kinetics of fine-grained alumina , 1999 .

[96]  E. Schulson,et al.  On modeling the anisotropic failure and flow of flawed sea ice , 2000 .

[97]  J. Currier,et al.  A Study on the Tensile Strength of Ice as a Function of Grain Size , 1982 .

[98]  E. A. Davis Phil. Mag. Letters , 1983 .

[99]  I. Baker,et al.  The orientation dependence of the strength of ice single crystals , 2000, Journal of Glaciology.

[100]  Ian Jordaan,et al.  Mechanics of ice–structure interaction , 2001 .

[101]  G. S. Knoke,et al.  The architecture of an anisotropic elastic-plastic sea ice mechanics constitutive law , 1998 .

[102]  Gary A. Maykut,et al.  Large‐scale heat exchange and ice production in the central Arctic , 1982 .

[103]  Carl E. Renshaw,et al.  On the initiation of shear faults during brittle compressive failure: A new mechanism , 1999 .

[104]  M. Rist,et al.  Ice triaxial deformation and fracture , 1994, Journal of Glaciology.

[105]  E. Schulson,et al.  The Effect of the Specimen–Platen Interface on Internal Cracking and Brittle Fracture of Ice Under Compression: High-Speed Photography , 1989, Journal of Glaciology.

[106]  Stephen J. Jones,et al.  The Confined Compressive Strength of Polycrystalline Ice , 1982 .

[107]  Paul Segall,et al.  Development of simple strike-slip fault zones, Mount Abbot quadrangle, Sierra Nevada, California , 1988 .

[108]  E. Schulson,et al.  A Brittle to Ductile Transition in Ice under Tension , 1984 .

[109]  E. Schulson,et al.  Ductile saline ice , 1994, Journal of Glaciology.

[110]  V. Gupta,et al.  Compressive failure of rocks by shear faulting , 1998 .

[111]  Ian Baker,et al.  Fractography of ice , 1989 .

[112]  P. H. Gammon,et al.  Triaxial experiments on iceberg and glacier ice , 1995 .

[113]  J. W. Glen,et al.  The effect of hydrogen disorder on dislocation movement and plastic deformation of ice , 1968 .

[114]  Michele L. Cooke,et al.  Erratum: ``Fracture localization along faults with spatially varying friction'' , 1997 .

[115]  M. Rist,et al.  Microcracking and shear fracture in ice , 1994, Annals of Glaciology.

[116]  Sia Nemat-Nasser,et al.  Compression‐induced microcrack growth in brittle solids: Axial splitting and shear failure , 1985 .

[117]  Don L. Anderson,et al.  A theoretical analysis of sea‐ice strength , 1958 .

[118]  D. Lockner,et al.  Quasi-static fault growth and shear fracture energy in granite , 1991, Nature.

[119]  Mark A. Hopkins,et al.  Four stages of pressure ridging , 1998 .

[120]  Wilford F. Weeks,et al.  Engineering Properties of Sea Ice , 1977, Journal of Glaciology.

[121]  R. C. Picu,et al.  Crack nucleation in columnar ice due to elastic anisotropu and grain boundary sliding , 1995 .

[122]  E. Schulson,et al.  Grain-boundary sliding and across-column cracking in columnar ice , 1995 .

[123]  J. Zhang,et al.  The Compressive Strength of Ice Cubes of Different Sizes , 1993 .

[124]  Teng-fong Wong,et al.  MICROMECHANICS OF FAULTING IN WESTERLY GRANITE , 1982 .

[125]  C. Renshaw,et al.  Universal behaviour in compressive failure of brittle materials , 2001, Nature.

[126]  M. Mellor,et al.  Measuring the Uniaxial Compressive Strength of Ice , 1977 .

[127]  E. Schulson Compressive shear faults in ice: plastic vs. Coulombic faults , 2002 .

[128]  C D Pomeroy,et al.  DESIGN STRESSES FOR CONCRETE STRUCTURES SUBJECT TO MULTI-AXIAL STRESSES , 1977 .

[129]  E. Schulson Fracture of ice , 2001 .

[130]  H. Frost Mechanisms of crack nucleation in ice , 2001 .

[131]  T. J. O. Sanderson,et al.  Ice Mechanics: Risks to Offshore Structures , 1988 .