Rule Induction

This chapter begins with a brief discussion of some problems associated with input data. Then different rule types are defined. Three representative rule induction methods: LEM1, LEM2, and AQ are presented. An idea of a classification system, where rule sets are utilized to classify new cases, is introduced. Methods to evaluate an error rate associated with classification of unseen cases using the rule set are described. Finally, some more advanced methods are listed.

[1]  Peter A. Flach,et al.  Strongly Typed Inductive Concept Learning , 1998, ILP.

[2]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[3]  Jerzy W. Grzymala-Busse,et al.  LERS-A System for Learning from Examples Based on Rough Sets , 1992, Intelligent Decision Support.

[4]  orgTom Fawcett fawcett Robust Classiication for Imprecise Environments , 1989 .

[6]  Ehud Shapiro,et al.  Algorithmic Program Debugging , 1983 .

[7]  José Hernández-Orallo,et al.  A Strong Complete Schmema for Inductive Functional Logic Programming , 1999, ILP.

[8]  John W. Lloyd,et al.  Classification of Individuals with Complex Structure , 2000, ICML.

[9]  Peter Idestam-Almquist,et al.  Generalization of Clauses under Implication , 1995, J. Artif. Intell. Res..

[10]  Nicholas I. Fisher,et al.  Bump hunting in high-dimensional data , 1999, Stat. Comput..

[11]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[12]  Ryszard S. Michalski,et al.  A Theory and Methodology of Inductive Learning , 1983, Artificial Intelligence.

[13]  Jaime G. Carbonell,et al.  Machine learning research , 1981, SGAR.

[14]  Casimir A. Kulikowski,et al.  Computer Systems That Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning and Expert Systems , 1990 .

[15]  Heikki Mannila,et al.  Fast Discovery of Association Rules , 1996, Advances in Knowledge Discovery and Data Mining.

[16]  Benjamin W. Wah,et al.  Principled Constructive Induction , 1989, IJCAI.

[17]  Ehud Shapiro,et al.  Inductive Inference of Theories from Facts , 1991, Computational Logic - Essays in Honor of Alan Robinson.

[18]  Jerzy W. Grzymala-Busse,et al.  Knowledge acquisition under uncertainty — a rough set approach , 1988, J. Intell. Robotic Syst..

[19]  Stephen Muggleton,et al.  To the international computing community: A new East-West challenge , 1994 .

[20]  E. M. Hartwell Boston , 1906 .

[21]  Peter Clark,et al.  Rule Induction with CN2: Some Recent Improvements , 1991, EWSL.

[22]  Sašo Džeroski,et al.  Using the m -estimate in rule induction , 1993 .

[23]  David J. Spiegelhalter,et al.  Machine Learning, Neural and Statistical Classification , 2009 .

[24]  Céline Rouveirol Flattening and Saturation: Two Representation Changes for Generalization , 2004, Machine Learning.

[25]  Jerzy W. Grzymala-Busse,et al.  A New Version of the Rule Induction System LERS , 1997, Fundam. Informaticae.

[26]  Saso Dzeroski,et al.  Inductive Logic Programming: Techniques and Applications , 1993 .

[27]  Peter A. Flach Simply logical - intelligent reasoning by example , 1994, Wiley professional computing.

[28]  John H. Holland,et al.  Induction: Processes of Inference, Learning, and Discovery , 1987, IEEE Expert.

[29]  Ryszard S. Michalski,et al.  The AQ15 Inductive Learning System: An Overview and Experiments , 1986 .

[30]  Stefan Wrobel,et al.  Inductive Logic Programming for Knowledge Discovery in Databases , 2001 .

[31]  Usama M. Fayyad,et al.  On the Handling of Continuous-Valued Attributes in Decision Tree Generation , 1992, Machine Learning.

[32]  Saso Dzeroski,et al.  The utility of background knowledge in learning medical diagnostic rules , 1993, Appl. Artif. Intell..

[33]  Hendrik Blockeel,et al.  Top-Down Induction of First Order Logical Decision Trees , 1998, AI Commun..

[34]  D.E. Goldberg,et al.  Classifier Systems and Genetic Algorithms , 1989, Artif. Intell..

[35]  Luc Dehaspe,et al.  Discovery of relational association rules , 2001 .

[36]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.

[37]  N. Japkowicz Learning from Imbalanced Data Sets: A Comparison of Various Strategies * , 2000 .

[38]  Bojan Cestnik,et al.  Estimating Probabilities: A Crucial Task in Machine Learning , 1990, ECAI.

[39]  Ronald L. Rivest,et al.  Learning decision lists , 2004, Machine Learning.

[40]  M. Kirsten,et al.  Distance based approaches to relational learning and clustering , 2001 .

[41]  Peter A. Flach,et al.  An extended transformation approach to inductive logic programming , 2001, ACM Trans. Comput. Log..

[42]  Peter A. Flach Predicate Invention in Inductive Data Engineering , 1993, ECML.

[43]  Nada Lavrac,et al.  The Multi-Purpose Incremental Learning System AQ15 and Its Testing Application to Three Medical Domains , 1986, AAAI.

[44]  Peter A. Flach,et al.  Rule induction for subgroup discovery with CN2-SD , 2002 .

[45]  Peter Idestam-Almquist,et al.  Generalization of clauses , 1993 .

[46]  William W. Cohen Fast Eeective Rule Induction , 1995 .

[47]  Peter Clark,et al.  The CN2 Induction Algorithm , 1989, Machine Learning.