A game theoretical approach to the algebraic counterpart of the Wagner hierarchy: Part I
暂无分享,去创建一个
[1] S C Kleene,et al. Representation of Events in Nerve Nets and Finite Automata , 1951 .
[2] Samuel Eilenberg,et al. Automata, languages, and machines. A , 1974, Pure and applied mathematics.
[3] Olivier Carton,et al. The Wagner Hierarchy , 1999, Int. J. Algebra Comput..
[4] J. A. Green,et al. On the Structure of Semigroups , 1951 .
[5] Victor Selivanov,et al. Fine Hierarchy of Regular Omega-Languages , 1995, Theor. Comput. Sci..
[6] P. Dangerfield. Logic , 1996, Aristotle and the Stoics.
[7] R. McNaughton,et al. Counter-Free Automata , 1971 .
[8] Olivier Finkel. Borel Ranks and Wadge Degrees of Context Free omega-Languages , 2005, CiE.
[9] J. Büchi. Weak Second‐Order Arithmetic and Finite Automata , 1960 .
[10] Alessandro Andretta,et al. Equivalence between Wadge and Lipschitz Determinacy , 2001, Ann. Pure Appl. Log..
[11] Jacques Duparc,et al. The Missing Link for omega-rational Sets, Automata, and Semigroups , 2006, Int. J. Algebra Comput..
[12] Jean-Éric Pin,et al. Logic, semigroups and automata on words , 1996, Annals of Mathematics and Artificial Intelligence.
[13] Olivier Carton,et al. The Wadge-Wagner Hierarchy of omega-Rational Sets , 1997, ICALP.
[14] Jacques Duparc,et al. Wadge hierarchy and Veblen hierarchy Part I: Borel sets of finite rank , 2001, Journal of Symbolic Logic.
[15] Olivier Finkel,et al. Borel ranks and Wadge degrees of context free $\omega$-languages , 2006, Mathematical Structures in Computer Science.
[16] Robert E. Tarjan,et al. Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..
[17] Jacques Duparc,et al. A hierarchy of deterministic context-free omega-languages , 2003, Theor. Comput. Sci..
[18] William W. Wadge,et al. Reducibility and Determinateness on the Baire Space , 1982 .
[19] A. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .
[20] Raymond E. Miller,et al. Varieties of Formal Languages , 1986 .
[21] Thomas Wilke. An Eilenberg Theorem for Infinity-Languages , 1991, ICALP.
[22] William W. Wadge,et al. Degrees of complexity of subsets of the baire space , 1972 .
[23] Marcel Paul Schützenberger,et al. On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..
[24] Dominique Perrin,et al. First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..
[25] Jean-Eric Pin,et al. Semigroups and automata on infinite words , 2007 .
[26] Olivier Carton,et al. Chains and Superchains for ω-Rational Sets, Automata and Semigroups , 1997, Int. J. Algebra Comput..
[27] Richard E. Ladner,et al. Application of Model Theoretic Games to Discrete Linear Orders and Finite Automata , 1977, Inf. Control..
[28] Y. Moschovakis. Descriptive Set Theory , 1980 .
[29] Robert McNaughton,et al. Counter-Free Automata (M.I.T. research monograph no. 65) , 1971 .
[30] David E. Muller,et al. Infinite sequences and finite machines , 1963, SWCT.
[31] Wolfgang Thomas,et al. Star-Free Regular Sets of omega-Sequences , 1979, Inf. Control..
[32] Michael Sipser,et al. Introduction to the Theory of Computation , 1996, SIGA.
[33] Jean-Éric Pin. Positive Varieties and Infinite Words , 1998, LATIN.
[34] Yiannis N. Moschovakis,et al. Notes On Set Theory , 1994 .
[35] Olivier Finkel,et al. An Effective Extension of the Wagner Hierarchy to Blind Counter Automata , 2001, CSL.
[36] Thomas Wilke,et al. Computing the Wadge Degree, the Lifschitz Degree, and the Rabin Index of a Regular Language of Infinite Words in Polynomial Time , 1995, TAPSOFT.