A game theoretical approach to the algebraic counterpart of the Wagner hierarchy: Part I

La hierarchie de Wagner constitue a ce jour la plus fine classification des langages ω-reguliers. Par ailleurs, l'approche algebrique de la theorie de langages formels montre que ces ensembles ω-reguliers correspondent precisement aux langages reconnaissables par des ω-semigroupes finis pointes. Ce travail s'inscrit dans ce contexte en fournissant une description complete de la contrepartie algebrique de la hierarchie de Wagner, et ce par le biais de la theorie descriptive des jeux de Wadge. Plus precisement, nous montrons d'abord que le degre de Wagner d'un langage ω-regulier est effectivement un invariant syntaxique. Nous definissons ensuite une relation de reduction entre ω-semigroupes pointes par le biais d'un jeu infini de type Wadge. La collection de ces structures algebriques ordonnee par cette relation apparait alors comme etant isomorphe a la hierarchie de Wagner, soit un quasi bon ordre decidable de largeur 2 et de hauteur ω. Nous exposons par la suite une procedure de decidabilite de cette hierarchie algebrique : on decrit une representation graphique des ω-semigroupes finis pointes, puis un algorithme sur ces structures graphiques qui calcule le degre de Wagner de n'importe quel element. Ainsi le degre de Wagner de tout langage ω-regulier peut etre calcule de maniere effective directement sur son image syntaxique. Nous montrons ensuite comment construire directement et inductivement une structure de n''importe quel degre. Nous terminons par une description detaillee des invariants algebriques qui caracterisent tous les degres de cette hierarchie. Abstract The Wagner hierarchy is known so far to be the most refined topological classification of ω-rational languages. Also, the algebraic study of formal languages shows that these ω-rational sets correspond precisely to the languages recognizable by finite pointed ω-semigroups. Within this framework, we provide a construction of the algebraic counterpart of the Wagner hierarchy. We adopt a hierarchical game approach, by translating the Wadge theory from the ω-rational language to the ω-semigroup context. More precisely, we first show that the Wagner degree is indeed a syntactic invariant. We then define a reduction relation on finite pointed ω-semigroups by means of a Wadge-like infinite two-player game. The collection of these algebraic structures ordered by this reduction is then proven to be isomorphic to the Wagner hierarchy, namely a well-founded and decidable partial ordering of width 2 and height $\omega^\omega$. We also describe a decidability procedure of this hierarchy: we introduce a graph representation of finite pointed ω-semigroups allowing to compute their precise Wagner degrees. The Wagner degree of every ω-rational language can therefore be computed directly on its syntactic image. We then show how to build a finite pointed ω-semigroup of any given Wagner degree. We finally describe the algebraic invariants characterizing every Wagner degree of this hierarchy.

[1]  S C Kleene,et al.  Representation of Events in Nerve Nets and Finite Automata , 1951 .

[2]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[3]  Olivier Carton,et al.  The Wagner Hierarchy , 1999, Int. J. Algebra Comput..

[4]  J. A. Green,et al.  On the Structure of Semigroups , 1951 .

[5]  Victor Selivanov,et al.  Fine Hierarchy of Regular Omega-Languages , 1995, Theor. Comput. Sci..

[6]  P. Dangerfield Logic , 1996, Aristotle and the Stoics.

[7]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[8]  Olivier Finkel Borel Ranks and Wadge Degrees of Context Free omega-Languages , 2005, CiE.

[9]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[10]  Alessandro Andretta,et al.  Equivalence between Wadge and Lipschitz Determinacy , 2001, Ann. Pure Appl. Log..

[11]  Jacques Duparc,et al.  The Missing Link for omega-rational Sets, Automata, and Semigroups , 2006, Int. J. Algebra Comput..

[12]  Jean-Éric Pin,et al.  Logic, semigroups and automata on words , 1996, Annals of Mathematics and Artificial Intelligence.

[13]  Olivier Carton,et al.  The Wadge-Wagner Hierarchy of omega-Rational Sets , 1997, ICALP.

[14]  Jacques Duparc,et al.  Wadge hierarchy and Veblen hierarchy Part I: Borel sets of finite rank , 2001, Journal of Symbolic Logic.

[15]  Olivier Finkel,et al.  Borel ranks and Wadge degrees of context free $\omega$-languages , 2006, Mathematical Structures in Computer Science.

[16]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[17]  Jacques Duparc,et al.  A hierarchy of deterministic context-free omega-languages , 2003, Theor. Comput. Sci..

[18]  William W. Wadge,et al.  Reducibility and Determinateness on the Baire Space , 1982 .

[19]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[20]  Raymond E. Miller,et al.  Varieties of Formal Languages , 1986 .

[21]  Thomas Wilke An Eilenberg Theorem for Infinity-Languages , 1991, ICALP.

[22]  William W. Wadge,et al.  Degrees of complexity of subsets of the baire space , 1972 .

[23]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[24]  Dominique Perrin,et al.  First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..

[25]  Jean-Eric Pin,et al.  Semigroups and automata on infinite words , 2007 .

[26]  Olivier Carton,et al.  Chains and Superchains for ω-Rational Sets, Automata and Semigroups , 1997, Int. J. Algebra Comput..

[27]  Richard E. Ladner,et al.  Application of Model Theoretic Games to Discrete Linear Orders and Finite Automata , 1977, Inf. Control..

[28]  Y. Moschovakis Descriptive Set Theory , 1980 .

[29]  Robert McNaughton,et al.  Counter-Free Automata (M.I.T. research monograph no. 65) , 1971 .

[30]  David E. Muller,et al.  Infinite sequences and finite machines , 1963, SWCT.

[31]  Wolfgang Thomas,et al.  Star-Free Regular Sets of omega-Sequences , 1979, Inf. Control..

[32]  Michael Sipser,et al.  Introduction to the Theory of Computation , 1996, SIGA.

[33]  Jean-Éric Pin Positive Varieties and Infinite Words , 1998, LATIN.

[34]  Yiannis N. Moschovakis,et al.  Notes On Set Theory , 1994 .

[35]  Olivier Finkel,et al.  An Effective Extension of the Wagner Hierarchy to Blind Counter Automata , 2001, CSL.

[36]  Thomas Wilke,et al.  Computing the Wadge Degree, the Lifschitz Degree, and the Rabin Index of a Regular Language of Infinite Words in Polynomial Time , 1995, TAPSOFT.