High marsh foraminiferal assemblage response to intradecadal climate variability (Caminha, NE Portugal)

Foraminiferal assemblages of Caminha tidal marshes have been studied since 2002, revealing a peculiar dominance of brackish species like Haplophragmoides manilaensis, Haplophragmoides sp., Pseudothurammina limnetis and Trochamminita salsa / irregularis in the high marshes of the Minho and the Coura lower estuaries. The assemblage composition reflects low salinity conditions, despite the short distance to the estuarine mouth (~4km). However, these environments presented a different composition in May 2010 when the presence of Trochammina inflata and Jadammina macrescens became very significant. This change is a reflection of several consecutive years marked by low precipitation and its associated increase in salinity in sediment pore water. The foraminiferal assemblage response to the shift in regional precipitation regime over the 8 years of this study, allows us to conclude that foraminiferal assemblages from Caminha high marsh record short period fluctuations, being able to contribute to high-resolution studies of SW Europe climate evolution.

[1]  Evelyn H. Brown Waves Tides And Shallow Water Processes , 2013 .

[2]  H. Grenfell,et al.  Suitability of salt-marsh foraminifera as proxy indicators of sea level in Tasmania , 2011 .

[3]  B. Horton,et al.  Influence of patchiness on modern salt-marsh foraminifera used in sea-level studies (North Carolina, USA) , 2011 .

[4]  A. Cearreta,et al.  Assessing the performance of a foraminifera-based transfer function to estimate sea-level changes in northern Portugal , 2011, Quaternary Research.

[5]  A. Cearreta,et al.  Distribution of foraminifera in salt marshes along the Atlantic coast of SW Europe: Tools to reconstruct past sea-level variations , 2010 .

[6]  A. Cearreta,et al.  Recent sea-level changes in the southern Bay of Biscay: transfer function reconstructions from salt-marshes compared with instrumental data , 2009 .

[7]  R. Taborda,et al.  Environmental constraints of foraminiferal assemblages distribution across a brackish tidal marsh (Caminha, NW Portugal) , 2009 .

[8]  B. Horton,et al.  The relative utility of foraminifera and diatoms for reconstructing late Holocene sea-level change in North Carolina, USA , 2009, Quaternary Research.

[9]  A. Cearreta,et al.  Development of a foraminifera-based transfer function in the Basque marshes, N. Spain: Implications for sea-level studies in the Bay of Biscay , 2008 .

[10]  B. Horton,et al.  The roles of elevation and salinity as primary controls on living foraminiferal distributions: Cowpen Marsh, Tees Estuary, UK , 2007 .

[11]  A. Cearreta,et al.  POSTGLACIAL FORAMINIFERA AND PALEOENVIRONMENTS OF THE MELIDES LAGOON (SW PORTUGAL): TOWARDS A REGIONAL MODEL OF COASTAL EVOLUTION , 2007 .

[12]  J. Catalao,et al.  Iberia-Azores Gravity Model (IAGRM) using multi-source gravity data , 2006 .

[13]  B. Horton,et al.  Patterns in cumulative increase in live and dead species from foraminiferal time series of Cowpen Marsh, Tees Estuary, UK: Implications for sea-level studies , 2006 .

[14]  R. Taborda,et al.  Confidence limits of species proportions in microfossil assemblages , 2002 .

[15]  A. Cearreta,et al.  Recent salt marsh development and natural regeneration of reclaimed areas in the Plentzia estuary, N. Spain , 2002 .

[16]  D. Charman,et al.  Foraminifera, testate amoebae and diatoms as sea‐level indicators in UK saltmarshes: a quantitative multiproxy approach , 2001 .

[17]  Ronald E. Martin Environmental Micropaleontology: The Application Of Microfossils To Environmental Geology , 2000 .

[18]  W. Gehrels Using foraminiferal transfer functions to produce high-resolution sea-level records from salt-marsh deposits, Maine, USA , 2000 .

[19]  Robin J. Edwards,et al.  UK intertidal foraminiferal distributions: implications for sea-level studies , 1999 .

[20]  Elisabeth Alve,et al.  BENTHIC FORAMINIFERAL RESPONSES TO ESTUARINE POLLUTION: A REVIEW , 1995 .

[21]  S. Rijk Salinity control on the distribution of salt marsh foraminifera (Great Marshes, Massachusetts) , 1995 .

[22]  W. Gehrels Determining relative sea-level change from salt-marsh foraminifera and plant zones on the coast of Maine, U.S.A. , 1994 .

[23]  H. Williams Intertidal benthic foraminiferal biofacies on the central Gulf Coast of Texas; modern distribution and application to sea level reconstruction , 1994 .

[24]  D. Scott,et al.  Quantitative studies of marsh foraminiferal distributions in Nova Scotia : implications for sea level studies , 1980 .

[25]  F. B. Phleger,et al.  Sedimentary Environments in a Marine Marsh , 1966, Science.

[26]  F. B. Phleger,et al.  Ecology of marsh and bay Foraminifera, Barnstable, Massachusetts , 1950 .

[27]  R.M. Woolley,et al.  Ordination , 1832, Vergleichende Darstellung aller allgemein verbindlichen und provinciellen Kirchensatzungen der katholischen Kirche durch alle Jahrhunderte.

[28]  W. Gehrels,et al.  Determining Relative Sea-level Change from Saltmarsh Foraminifera and Plant Zones on the Coast of Maine , , 2012 .

[29]  J. Morén,et al.  Salinity Influence on Foraminiferal Tidal Marsh Assemblages of NW Portugal: an Anthropogenic Constraint? , 2007 .

[30]  John W. Murray,et al.  Ecology and applications of benthic foraminifera , 2006 .

[31]  B. Horton,et al.  Quantifying Holocene Sea Level Change Using Intertidal Foraminifera: Lessons from the British Isles , 2006 .

[32]  Ter Braak,et al.  Canoco reference manual and CanoDraw for Windows user''s guide: software for canonical community ord , 2002 .

[33]  F. Vilas,et al.  Microhábitats de foraminíferos bentónicos en la ría de Vigo y su aplicación a la interpretación paleoecológica. , 2000 .

[34]  B. S. Gupta Foraminifera in marginal marine environments , 1999 .

[35]  B. Hayward Recent New Zealand shallow-water benthic foraminifera : taxonomy, ecologic distribution, biogeography, and use in paleoenvironmental assessment , 1999 .

[36]  B. Horton,et al.  Quantitative Palaeoenvironmental Reconstruction techniques in Sea-level Studies , 1999 .