A new array pattern synthesis algorithm using the two-step least-squares method

This letter presents a new array pattern synthesis algorithm using the two-step least-squares method. The algorithm utilizes the randomness of the desired pattern phase to design an array pattern. Several numerical examples are presented to illustrate this algorithm.

[1]  R. Harrington,et al.  Computational methods for antenna pattern synthesis , 1975 .

[2]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[3]  R.T. Compton,et al.  A numerical pattern synthesis algorithm for arrays , 1990, International Symposium on Antennas and Propagation Society, Merging Technologies for the 90's.

[4]  L. J. Griffiths,et al.  A simple algorithm to achieve desired patterns for arbitrary arrays , 1992, IEEE Trans. Signal Process..

[5]  Meng Hwa Er,et al.  Array pattern synthesis with a controlled mean-square sidelobe level , 1992, IEEE Trans. Signal Process..

[6]  M. Er,et al.  A flexible array synthesis method using quadratic programming , 1993 .

[7]  A. Paulraj,et al.  Blind estimation of multiple co-channel digital signals using an antenna array , 1994, IEEE Signal Processing Letters.

[8]  I. Parra,et al.  A least squares projective constant modulus approach , 1995, Proceedings of 6th International Symposium on Personal, Indoor and Mobile Radio Communications.

[9]  Stephen P. Boyd,et al.  Antenna array pattern synthesis via convex optimization , 1997, IEEE Trans. Signal Process..

[10]  M. A. Ingram,et al.  Pattern Synthesis for Arbitrary Arrays Using an Adaptive Array Method , 1999 .

[11]  Fan Wang,et al.  Optimal array pattern synthesis using semidefinite programming , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[12]  Fan Wang,et al.  A new algorithm for array pattern synthesis using the recursive least squares method , 2003, IEEE Signal Processing Letters.

[13]  Qinghua Guo,et al.  Pattern synthesis method for arbitrary arrays based on LCMV criterion , 2003 .

[14]  Gene H. Golub,et al.  The differentiation of pseudo-inverses and non-linear least squares problems whose variables separate , 1972, Milestones in Matrix Computation.