Transdimensional Electrical Resistivity Tomography
暂无分享,去创建一个
[1] A. Curtis,et al. Prior information, sampling distributions, and the curse of dimensionality , 2001 .
[2] M. Sambridge,et al. Geophysical parametrization and interpolation of irregular data using natural neighbours , 1995 .
[3] T. Günther,et al. Three‐dimensional modelling and inversion of dc resistivity data incorporating topography – II. Inversion , 2006 .
[4] Sam Kaplan,et al. Low frequency full waveform seismic inversion within a tree based Bayesian framework , 2018 .
[5] Anandaroop Ray,et al. Bayesian inversion of marine CSEM data from the Scarborough gas field using a transdimensional 2-D parametrization , 2014 .
[6] Albert Tarantola,et al. Inverse problem theory - and methods for model parameter estimation , 2004 .
[7] T. Bayes. LII. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter to John Canton, A. M. F. R. S , 1763, Philosophical Transactions of the Royal Society of London.
[8] Mark Noble,et al. Stochastic seismic tomography by interacting Markov chains , 2016 .
[9] A. Dey,et al. Resistivity modelling for arbitrarily shaped two-dimensional structures , 1979 .
[10] L. Neil Frazer,et al. Importance reweighting reduces dependence on temperature in Gibbs samplers: an application to the coseismic geodetic inverse problem , 2005 .
[11] A. Curtis. Optimal experiment design: cross-borehole tomographic examples , 1999 .
[12] Jan Dettmer,et al. Trans-dimensional finite-fault inversion , 2014 .
[13] S. Myers,et al. LLNL‐G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction , 2012 .
[14] William A. Link,et al. On thinning of chains in MCMC , 2012 .
[15] F. Gallovič,et al. Three-dimensional S-wave velocity model of the Bohemian Massif from Bayesian ambient noise tomography , 2017 .
[16] Andrew Binley,et al. A Bayesian trans-dimensional approach for the fusion of multiple geophysical datasets , 2013 .
[17] Roel Snieder,et al. To Bayes or not to Bayes , 1997 .
[18] Stan E. Dosso,et al. Efficient trans-dimensional Bayesian inversion for geoacoustic profile estimation , 2014 .
[19] Jan Dettmer,et al. Trans-dimensional geoacoustic inversion. , 2010, The Journal of the Acoustical Society of America.
[20] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[21] E. Somersalo,et al. Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .
[22] Rhys Hawkins,et al. Trans-dimensional Bayesian inversion of airborne electromagnetic data for 2D conductivity profiles , 2017 .
[23] B. Minsley. A trans-dimensional Bayesian Markov chain Monte Carlo algorithm for model assessment using frequency-domain electromagnetic data , 2011 .
[24] Malcolm Sambridge,et al. Transdimensional inversion of receiver functions and surface wave dispersion , 2012 .
[25] A. Revil,et al. Stochastic joint inversion of hydrogeophysical data for salt tracer test monitoring and hydraulic conductivity imaging , 2013 .
[26] Malcolm Sambridge,et al. A self-parametrizing partition model approach to tomographic inverse problems , 2009 .
[27] A. Malinverno. Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem , 2002 .
[28] Stan E. Dosso,et al. Direct-seismogram inversion for receiver-side structure with uncertain source–time functions , 2015 .
[29] N. Rawlinson,et al. Transdimensional inversion of ambient seismic noise for 3D shear velocity structure of the Tasmanian crust , 2013 .
[30] David L. Alumbaugh,et al. Robust and accelerated Bayesian inversion of marine controlled-source electromagnetic data using parallel tempering , 2013 .
[31] A. Dey,et al. Resistivity modeling for arbitrarily shaped three-dimensional structures , 1979 .
[32] Peter N. Shive,et al. Singularity removal: A refinement of resistivity modeling techniques , 1989 .
[33] Hansruedi Maurer,et al. Design strategies for electromagnetic geophysical surveys , 2000 .
[34] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[35] Yuguo Li,et al. Three‐dimensional DC resistivity forward modelling using finite elements in comparison with finite‐difference solutions , 2002 .
[36] A. Binley,et al. Improved hydrogeophysical characterization using joint inversion of cross‐hole electrical resistance and ground‐penetrating radar traveltime data , 2006 .
[37] Wang,et al. Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.
[38] Martin B. Hansen,et al. Bayesian inversion of geoelectrical resistivity data , 2003 .
[39] K. Singha,et al. Stochastic inversion of tracer test and electrical geophysical data to estimate hydraulic conductivities , 2010 .
[40] Jan Dettmer,et al. Trans-dimensional joint inversion of seabed scattering and reflection data. , 2013, The Journal of the Acoustical Society of America.
[41] Andrew Gelman,et al. General methods for monitoring convergence of iterative simulations , 1998 .
[42] J. A. Vrugt,et al. Two-dimensional probabilistic inversion of plane-wave electromagnetic data: Methodology, model constraints and joint inversion with electrical resistivity data , 2014, 1701.02540.
[43] Malcolm Sambridge,et al. A Parallel Tempering algorithm for probabilistic sampling and multimodal optimization , 2014 .
[44] M. Sambridge,et al. Transdimensional tomography with unknown data noise , 2012 .
[45] G. W. Hohmann,et al. An investigation of finite-element modeling for electrical and electromagnetic data in three dimensions , 1981 .
[46] P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .
[47] G. Roberts,et al. Optimal scaling of the random walk Metropolis on elliptically symmetric unimodal targets , 2009, 0909.0856.
[48] Albert Tarantola,et al. Monte Carlo sampling of solutions to inverse problems , 1995 .
[49] Andrew Curtis,et al. Optimal design of focused experiments and surveys , 1999 .
[50] L. S. Edwards,et al. A modified pseudosection for resistivity and IP , 1977 .
[51] Michael W Deem,et al. Parallel tempering: theory, applications, and new perspectives. , 2005, Physical chemistry chemical physics : PCCP.
[52] T. Wunderlich,et al. Case history: integrated geophysical survey at Katarínka Monastery (Slovakia) , 2015 .
[53] M. Sambridge,et al. Seismic tomography with the reversible jump algorithm , 2009 .
[54] D. Rubin,et al. Inference from Iterative Simulation Using Multiple Sequences , 1992 .
[55] Rhys Hawkins,et al. Geophysical imaging using trans-dimensional trees. , 2015 .
[56] P. Green,et al. Delayed rejection in reversible jump Metropolis–Hastings , 2001 .
[57] L Tierney,et al. Some adaptive monte carlo methods for Bayesian inference. , 1999, Statistics in medicine.
[58] M. Sambridge,et al. Inference of abrupt changes in noisy geochemical records using transdimensional changepoint models , 2011 .
[59] Malcolm Sambridge,et al. Parallel tempering for strongly nonlinear geoacoustic inversion. , 2012, The Journal of the Acoustical Society of America.
[60] Andrew Binley,et al. Improved characterisation and modelling of measurement errors in electrical resistivity tomography (ERT) surveys , 2017 .
[61] Brian Baptie,et al. SUPPLEMENTAL MATERIAL for Uncertainty Loops in Travel-Time Tomography from Nonlinear Wave Physics , 2015 .
[62] A. L. Ramirez,et al. Stochastic inversion of electrical resistivity changes using a Markov Chain Monte Carlo approach , 2005 .
[63] Anandaroop Ray,et al. Frequency domain full waveform elastic inversion of marine seismic data from the Alba field using a Bayesian trans-dimensional algorithm , 2016 .
[64] Adam Pidlisecky,et al. FW2_5D: A MATLAB 2.5-D electrical resistivity modeling code , 2008, Comput. Geosci..
[65] A. Binley,et al. DC Resistivity and Induced Polarization Methods , 2005 .