Transdimensional Electrical Resistivity Tomography

[1]  A. Curtis,et al.  Prior information, sampling distributions, and the curse of dimensionality , 2001 .

[2]  M. Sambridge,et al.  Geophysical parametrization and interpolation of irregular data using natural neighbours , 1995 .

[3]  T. Günther,et al.  Three‐dimensional modelling and inversion of dc resistivity data incorporating topography – II. Inversion , 2006 .

[4]  Sam Kaplan,et al.  Low frequency full waveform seismic inversion within a tree based Bayesian framework , 2018 .

[5]  Anandaroop Ray,et al.  Bayesian inversion of marine CSEM data from the Scarborough gas field using a transdimensional 2-D parametrization , 2014 .

[6]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[7]  T. Bayes LII. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter to John Canton, A. M. F. R. S , 1763, Philosophical Transactions of the Royal Society of London.

[8]  Mark Noble,et al.  Stochastic seismic tomography by interacting Markov chains , 2016 .

[9]  A. Dey,et al.  Resistivity modelling for arbitrarily shaped two-dimensional structures , 1979 .

[10]  L. Neil Frazer,et al.  Importance reweighting reduces dependence on temperature in Gibbs samplers: an application to the coseismic geodetic inverse problem , 2005 .

[11]  A. Curtis Optimal experiment design: cross-borehole tomographic examples , 1999 .

[12]  Jan Dettmer,et al.  Trans-dimensional finite-fault inversion , 2014 .

[13]  S. Myers,et al.  LLNL‐G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction , 2012 .

[14]  William A. Link,et al.  On thinning of chains in MCMC , 2012 .

[15]  F. Gallovič,et al.  Three-dimensional S-wave velocity model of the Bohemian Massif from Bayesian ambient noise tomography , 2017 .

[16]  Andrew Binley,et al.  A Bayesian trans-dimensional approach for the fusion of multiple geophysical datasets , 2013 .

[17]  Roel Snieder,et al.  To Bayes or not to Bayes , 1997 .

[18]  Stan E. Dosso,et al.  Efficient trans-dimensional Bayesian inversion for geoacoustic profile estimation , 2014 .

[19]  Jan Dettmer,et al.  Trans-dimensional geoacoustic inversion. , 2010, The Journal of the Acoustical Society of America.

[20]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[21]  E. Somersalo,et al.  Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .

[22]  Rhys Hawkins,et al.  Trans-dimensional Bayesian inversion of airborne electromagnetic data for 2D conductivity profiles , 2017 .

[23]  B. Minsley A trans-dimensional Bayesian Markov chain Monte Carlo algorithm for model assessment using frequency-domain electromagnetic data , 2011 .

[24]  Malcolm Sambridge,et al.  Transdimensional inversion of receiver functions and surface wave dispersion , 2012 .

[25]  A. Revil,et al.  Stochastic joint inversion of hydrogeophysical data for salt tracer test monitoring and hydraulic conductivity imaging , 2013 .

[26]  Malcolm Sambridge,et al.  A self-parametrizing partition model approach to tomographic inverse problems , 2009 .

[27]  A. Malinverno Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem , 2002 .

[28]  Stan E. Dosso,et al.  Direct-seismogram inversion for receiver-side structure with uncertain source–time functions , 2015 .

[29]  N. Rawlinson,et al.  Transdimensional inversion of ambient seismic noise for 3D shear velocity structure of the Tasmanian crust , 2013 .

[30]  David L. Alumbaugh,et al.  Robust and accelerated Bayesian inversion of marine controlled-source electromagnetic data using parallel tempering , 2013 .

[31]  A. Dey,et al.  Resistivity modeling for arbitrarily shaped three-dimensional structures , 1979 .

[32]  Peter N. Shive,et al.  Singularity removal: A refinement of resistivity modeling techniques , 1989 .

[33]  Hansruedi Maurer,et al.  Design strategies for electromagnetic geophysical surveys , 2000 .

[34]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[35]  Yuguo Li,et al.  Three‐dimensional DC resistivity forward modelling using finite elements in comparison with finite‐difference solutions , 2002 .

[36]  A. Binley,et al.  Improved hydrogeophysical characterization using joint inversion of cross‐hole electrical resistance and ground‐penetrating radar traveltime data , 2006 .

[37]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[38]  Martin B. Hansen,et al.  Bayesian inversion of geoelectrical resistivity data , 2003 .

[39]  K. Singha,et al.  Stochastic inversion of tracer test and electrical geophysical data to estimate hydraulic conductivities , 2010 .

[40]  Jan Dettmer,et al.  Trans-dimensional joint inversion of seabed scattering and reflection data. , 2013, The Journal of the Acoustical Society of America.

[41]  Andrew Gelman,et al.  General methods for monitoring convergence of iterative simulations , 1998 .

[42]  J. A. Vrugt,et al.  Two-dimensional probabilistic inversion of plane-wave electromagnetic data: Methodology, model constraints and joint inversion with electrical resistivity data , 2014, 1701.02540.

[43]  Malcolm Sambridge,et al.  A Parallel Tempering algorithm for probabilistic sampling and multimodal optimization , 2014 .

[44]  M. Sambridge,et al.  Transdimensional tomography with unknown data noise , 2012 .

[45]  G. W. Hohmann,et al.  An investigation of finite-element modeling for electrical and electromagnetic data in three dimensions , 1981 .

[46]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[47]  G. Roberts,et al.  Optimal scaling of the random walk Metropolis on elliptically symmetric unimodal targets , 2009, 0909.0856.

[48]  Albert Tarantola,et al.  Monte Carlo sampling of solutions to inverse problems , 1995 .

[49]  Andrew Curtis,et al.  Optimal design of focused experiments and surveys , 1999 .

[50]  L. S. Edwards,et al.  A modified pseudosection for resistivity and IP , 1977 .

[51]  Michael W Deem,et al.  Parallel tempering: theory, applications, and new perspectives. , 2005, Physical chemistry chemical physics : PCCP.

[52]  T. Wunderlich,et al.  Case history: integrated geophysical survey at Katarínka Monastery (Slovakia) , 2015 .

[53]  M. Sambridge,et al.  Seismic tomography with the reversible jump algorithm , 2009 .

[54]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[55]  Rhys Hawkins,et al.  Geophysical imaging using trans-dimensional trees. , 2015 .

[56]  P. Green,et al.  Delayed rejection in reversible jump Metropolis–Hastings , 2001 .

[57]  L Tierney,et al.  Some adaptive monte carlo methods for Bayesian inference. , 1999, Statistics in medicine.

[58]  M. Sambridge,et al.  Inference of abrupt changes in noisy geochemical records using transdimensional changepoint models , 2011 .

[59]  Malcolm Sambridge,et al.  Parallel tempering for strongly nonlinear geoacoustic inversion. , 2012, The Journal of the Acoustical Society of America.

[60]  Andrew Binley,et al.  Improved characterisation and modelling of measurement errors in electrical resistivity tomography (ERT) surveys , 2017 .

[61]  Brian Baptie,et al.  SUPPLEMENTAL MATERIAL for Uncertainty Loops in Travel-Time Tomography from Nonlinear Wave Physics , 2015 .

[62]  A. L. Ramirez,et al.  Stochastic inversion of electrical resistivity changes using a Markov Chain Monte Carlo approach , 2005 .

[63]  Anandaroop Ray,et al.  Frequency domain full waveform elastic inversion of marine seismic data from the Alba field using a Bayesian trans-dimensional algorithm , 2016 .

[64]  Adam Pidlisecky,et al.  FW2_5D: A MATLAB 2.5-D electrical resistivity modeling code , 2008, Comput. Geosci..

[65]  A. Binley,et al.  DC Resistivity and Induced Polarization Methods , 2005 .