Composite silica/Nafion® membranes prepared by tetraethylorthosilicate sol-gel reaction and solution casting for direct methanol fuel cells

Abstract Composite silica/Nafion ® membranes were prepared using a tetraethylorthosilicate (TEOS) hydrolysis sol–gel reaction followed by solution casting. Physico-chemical properties of the composite membranes were characterized by TGA, XRD, FT-IR, SEM-EDX and water uptake. Membranes were investigated in direct methanol fuel cells (DMFCs). Lower silica loadings (3 and 5 wt.%) in the composite membranes helped to inhibit methanol crossover through the membrane, while higher silica loadings demonstrated a smaller contribution to lowering the methanol crossover. Proton conductivity of the composite membranes decreased with increasing silica content, in spite of the increasing membrane water uptake. DMFC performance using the composite membrane with 5 wt.% silica loading was higher than using a pure Nafion ® membrane.

[1]  Robert F. Savinell,et al.  Thermal Stability of Nafion® in Simulated Fuel Cell Environments , 1996 .

[2]  V. Tricoli Proton and Methanol Transport in Poly(perfluorosulfonate) Membranes Containing Cs + and H + Cations , 1998 .

[3]  Gérard Gebel,et al.  Structure and related properties of solution-cast perfluorosulfonated ionomer films , 1987 .

[4]  Kenneth A. Mauritz,et al.  Organic-Inorganic Hybrid Materials: Perfluorinated Ionomers as Sol-Gel Polymerization Templates for Inorganic Alkoxides , 1998 .

[5]  T. R. Stengle,et al.  Nuclear magnetic resonance of xenon absorbed in solid polymers: a probe of the amorphous state , 1987 .

[6]  Shimshon Gottesfeld,et al.  Water and Methanol Uptakes in Nafion Membranes and Membrane Effects on Direct Methanol Cell Performance , 2000 .

[7]  B. Pivovar,et al.  Pervaporation membranes in direct methanol fuel cells , 1999 .

[8]  K. Friedrich,et al.  Transport properties of ionomer composite membranes for direct methanol fuel cells , 2002 .

[9]  Edward L Cussler,et al.  Composite membranes for direct methanol fuel cells , 2001 .

[10]  Hiroyuki Uchida,et al.  Self‐Humidifying Polymer Electrolyte Membranes for Fuel Cells , 1996 .

[11]  S. V. Davis,et al.  Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol-gel reaction , 1995 .

[12]  V. Antonucci,et al.  Hybrid Nafion-silica membranes doped with heteropolyacids for application in direct methanol fuel cells , 2001 .

[13]  T. Springer,et al.  Water Uptake by and Transport Through Nafion® 117 Membranes , 1993 .

[14]  Shimshon Gottesfeld,et al.  Methanol transport through Nafion membranes : Electro-osmotic drag effects on potential step measurements , 2000 .

[15]  Andrew B. Bocarsly,et al.  Silicon Oxide Nafion Composite Membranes for Proton-Exchange Membrane Fuel Cell Operation at 80-140°C , 2002 .

[16]  T. Gierke,et al.  Ion transport and clustering in nafion perfluorinated membranes , 1983 .

[17]  Antonino S. Aricò,et al.  Investigation of a direct methanol fuel cell based on a composite Nafion®-silica electrolyte for high temperature operation , 1999 .

[18]  M. Bartolozzi,et al.  A Comparative Investigation of Proton and Methanol Transport in Fluorinated Ionomeric Membranes , 2000 .

[19]  D. Peck,et al.  Performance evaluation of a Nafion/silicon oxide hybrid membrane for direct methanol fuel cell , 2002 .

[20]  K. Mauritz,et al.  Nafion®/(SiO2, ORMOSIL, and dimethylsiloxane) hybrids via in situ sol-gel reactions : Characterization of fundamental properties , 1998 .

[21]  Prabhuram Joghee,et al.  Preparation and characterization of hybrid Nafion–silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells , 2004 .

[22]  J. Winefordner,et al.  Laser-excited atomic fluorescence of atoms produced in a graphite furnace , 1986 .

[23]  Shimshon Gottesfeld,et al.  High performance direct methanol polymer electrolyte fuel cells , 1996 .

[24]  D. Chu,et al.  The influence of methanol on O[sub 2] electroreduction at a rotating Pt disk electrode in acid electrolyte , 1994 .

[25]  Y. Si,et al.  Trilayer Membranes with a Methanol-Barrier Layer for DMFCs , 2004 .

[26]  K. Friedrich,et al.  Modified Nafion®-based membranes for use in direct methanol fuel cells , 2002 .

[27]  Subbarao Surampudi,et al.  Advances in direct oxidation methanol fuel cells , 1994 .

[28]  M. Barak,et al.  Power Sources 4 , 1974 .

[29]  W. M. Taama,et al.  The impact of mass transport and methanol crossover on the direct methanol fuel cell , 1999 .

[30]  K. Mauritz,et al.  [Perfluorosulfonate ionomer]/silicate hybrid membranes via base-catalyzed in situ sol–gel processes for tetraethylorthosilicate , 2000 .

[31]  R. Savinell,et al.  Evaluation of a Sol-Gel Derived Nafion/Silica Hybrid Membrane for Polymer Electrolyte Membrane Fuel Cell Applications: II. Methanol Uptake and Methanol Permeability , 2001 .

[32]  R. Savinell,et al.  Evaluation of a Sol-Gel Derived Nafion/Silica Hybrid Membrane for Proton Electrolyte Membrane Fuel Cell Applications: I. Proton Conductivity and Water Content , 2001 .