Thermodynamic study of β-Ga2O3 growth by halide vapor phase epitaxy

Abstract β-Ga 2 O 3 growth by halide vapor phase epitaxy (HVPE) was investigated by thermodynamic analysis. GaCl and O 2 were determined to be appropriate precursors for the growth of β-Ga 2 O 3 by HVPE. When H 2 is not included in the carrier gas, growth is expected up to 1600 °C. However, with an increase of H 2 in the carrier gas, the driving force of Ga 2 O 3 growth decreases. Stable growth at 1000 °C in an inert carrier gas requires an input VI/III ratio above 1. Experimental results for the homoepitaxial growth of β-Ga 2 O 3 using GaCl and O 2 as precursors and N 2 as a carrier gas show that β-Ga 2 O 3 growth by HVPE can be thermodynamically controlled.

[1]  Akito Kuramata,et al.  Device-Quality β-Ga2O3 Epitaxial Films Fabricated by Ozone Molecular Beam Epitaxy , 2012 .

[2]  C. Alcock,et al.  Thermodynamic Properties of Individual Substances , 1994 .

[3]  Takayoshi Oshima,et al.  Ga2O3 Thin Film Growth on c-Plane Sapphire Substrates by Molecular Beam Epitaxy for Deep-Ultraviolet Photodetectors , 2007 .

[4]  M. W. Chase,et al.  NIST-JANAF Thermochemical Tables Fourth Edition , 1998 .

[5]  Y. Kumagai,et al.  Step-flow growth of homoepitaxial ZnO thin layers by halide vapor phase epitaxy using ZnCl2 and H2O source gases , 2010 .

[6]  Y. Kumagai,et al.  Halide vapor phase epitaxy of ZnO studied by thermodynamic analysis and growth experiments , 2011 .

[7]  Hideo Hosono,et al.  Deep-ultraviolet transparent conductive β-Ga2O3 thin films , 2000 .

[8]  Y. Kumagai,et al.  Thermodynamics on hydride vapor phase epitaxy of AlN using AlCl3 and NH3 , 2006 .

[9]  I. Barin,et al.  Thermochemical properties of inorganic substances , 1973 .

[10]  Toru Nagashima,et al.  Preparation of a Freestanding AlN Substrate from a Thick AlN Layer Grown by Hydride Vapor Phase Epitaxy on a Bulk AlN Substrate Prepared by Physical Vapor Transport , 2012 .

[11]  Y. Kumagai,et al.  Thermodynamic Analysis of Various Types of Hydride Vapor Phase Epitaxy System for High-Speed Growth of InN , 2006 .

[12]  Akito Kuramata,et al.  Development of gallium oxide power devices , 2014 .

[13]  Steffen Ganschow,et al.  Czochralski growth and characterization of β‐Ga2O3 single crystals , 2010 .

[14]  Zbigniew Galazka,et al.  Homoepitaxial growth of β‐Ga2O3 layers by metal‐organic vapor phase epitaxy , 2014 .

[15]  K. Fujito,et al.  Bulk GaN crystals grown by HVPE , 2009 .

[16]  H. Seki,et al.  Equilibrium Computation for the Vapor Growth of InxGa1-xP Crystals , 1972 .

[17]  Akito Kuramata,et al.  Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates , 2012 .

[18]  A. Kuramata,et al.  $\hbox{Ga}_{2} \hbox{O}_{3}$ Schottky Barrier Diodes Fabricated by Using Single-Crystal $\beta$– $\hbox{Ga}_{2} \hbox{O}_{3}$ (010) Substrates , 2013, IEEE Electron Device Letters.

[19]  Akinori Koukitu,et al.  Thermodynamic Analysis of Hydride Vapor Phase Epitaxy of GaN , 1998 .

[20]  A. Yoshikawa,et al.  Floating zone growth of β-Ga2O3: a new window material for optoelectronic device applications , 2001 .

[21]  Noboru Ichinose,et al.  Large-size β-Ga2O3 single crystals and wafers , 2004 .