Parameter-Less Optimization with the Extended Compact Genetic Algorithm and Iterated Local Search

This paper presents a parameter-less optimization framework that uses the extended compact genetic algorithm (ECGA) and iterated local search (ILS), but is not restricted to these algorithms. The presented optimization algorithm (ILS+ECGA) comes as an extension of the parameter-less genetic algorithm (GA), where the parameters of a selecto-recombinative GA are eliminated. The approach that we propose is tested on several well known problems. In the absence of domain knowledge, it is shown that ILS+ECGA is a robust and easy-to-use optimization method.

[1]  G. Harik Linkage Learning via Probabilistic Modeling in the ECGA , 1999 .

[2]  Christopher R. Stephens,et al.  "Optimal" mutation rates for genetic search , 2006, GECCO.

[3]  Kalyanmoy Deb,et al.  A Comparative Analysis of Selection Schemes Used in Genetic Algorithms , 1990, FOGA.

[4]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[5]  Rajarshi Das,et al.  A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.

[6]  Lawrence Davis,et al.  Adapting Operator Probabilities in Genetic Algorithms , 1989, ICGA.

[7]  Bryant A. Julstrom,et al.  What Have You Done for Me Lately? Adapting Operator Probabilities in a Steady-State Genetic Algorithm , 1995, ICGA.

[8]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[9]  Fernando G. Lobo,et al.  A parameter-less genetic algorithm , 1999, GECCO.

[10]  Dirk Thierens,et al.  Mixing in Genetic Algorithms , 1993, ICGA.

[11]  Kalyanmoy Deb,et al.  Understanding Interactions among Genetic Algorithm Parameters , 1998, FOGA.

[12]  Kalyanmoy Deb,et al.  Genetic Algorithms, Noise, and the Sizing of Populations , 1992, Complex Syst..

[13]  Schloss Birlinghoven,et al.  How Genetic Algorithms Really Work I.mutation and Hillclimbing , 2022 .

[14]  D. Goldberg,et al.  BOA: the Bayesian optimization algorithm , 1999 .

[15]  David E. Goldberg,et al.  The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations , 1999, Evolutionary Computation.

[16]  William M. Spears,et al.  Crossover or Mutation? , 1992, FOGA.

[17]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[18]  Heinz Mühlenbein,et al.  How Genetic Algorithms Really Work: Mutation and Hillclimbing , 1992, PPSN.

[19]  Robert E. Smith,et al.  Adaptively Resizing Populations: Algorithm, Analysis, and First Results , 1993, Complex Syst..

[20]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[21]  Dirk Thierens,et al.  Toward a Better Understanding of Mixing in Genetic Algorithms , 1993 .

[22]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.