A 16K Current-Based 8T SRAM Compute-In-Memory Macro with Decoupled Read/Write and 1-5bit Column ADC
暂无分享,去创建一个
Tony Tae-Hyoung Kim | Taegeun Yoo | Bongjin Kim | Kevin Tshun Chuan Chai | Chengshuo Yu | T. T. Kim | Taegeun Yoo | K. Chai | Bongjin Kim | Chengshuo Yu
[1] Hossein Valavi,et al. A Mixed-Signal Binarized Convolutional-Neural-Network Accelerator Integrating Dense Weight Storage and Multiplication for Reduced Data Movement , 2018, 2018 IEEE Symposium on VLSI Circuits.
[2] Mark Horowitz,et al. 1.1 Computing's energy problem (and what we can do about it) , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).
[3] Naveen Verma,et al. A machine-learning classifier implemented in a standard 6T SRAM array , 2016, 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits).
[4] Jae-sun Seo,et al. XNOR-SRAM: In-Memory Computing SRAM Macro for Binary/Ternary Deep Neural Networks , 2018, 2018 IEEE Symposium on VLSI Technology.
[5] Qian Chen,et al. A 16K SRAM-Based Mixed-Signal In-Memory Computing Macro Featuring Voltage-Mode Accumulator and Row-by-Row ADC , 2019, 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC).
[6] Anantha Chandrakasan,et al. Conv-RAM: An energy-efficient SRAM with embedded convolution computation for low-power CNN-based machine learning applications , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).