3D Quantification of Wall Shear Stress and Oscillatory Shear Index Using a Finite-Element Method in 3D CINE PC-MRI Data of the Thoracic Aorta

Several 2D methods have been proposed to estimate WSS and OSI from PC-MRI, neglecting the longitudinal velocity gradients that typically arise in cardiovascular flow, particularly on vessel geometries whose cross section and centerline orientation strongly vary in the axial direction. Thus, the contribution of longitudinal velocity gradients remains understudied. In this work, we propose a 3D finite-element method for the quantification of WSS and OSI from 3D-CINE PC-MRI that accounts for both in-plane and longitudinal velocity gradients. We demonstrate the convergence and robustness of the method on cylindrical geometries using a synthetic phantom based on the Poiseuille flow equation. We also show that, in the presence of noise, the method is both stable and accurate. Using computational fluid dynamics simulations, we show that the proposed 3D method results in more accurate WSS estimates than those obtained from a 2D analysis not considering out-of-plane velocity gradients. Further, we conclude that for irregular geometries the accurate prediction of WSS requires the consideration of longitudinal gradients in the velocity field. Additionally, we compute 3D maps of WSS and OSI for 3D-CINE PC-MRI data sets from an aortic phantom and sixteen healthy volunteers and two patients. The OSI values show a greater dispersion than WSS, which is strongly dependent on the PC-MRI resolution. We envision that the proposed 3D method will improve the estimation of WSS and OSI from 3D-CINE PC-MRI images, allowing for more accurate estimates in vessels with pathologies that induce high longitudinal velocity gradients, such as coarctations and aneurisms.

[1]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[2]  Christodoulos Stefanadis,et al.  Vascular wall shear stress: basic principles and methods. , 2005, Hellenic journal of cardiology : HJC = Hellenike kardiologike epitheorese.

[3]  J. Hennig,et al.  Quantitative 2D and 3D phase contrast MRI: Optimized analysis of blood flow and vessel wall parameters , 2008, Magnetic resonance in medicine.

[4]  David A. Boas,et al.  Tetrahedral mesh generation from volumetric binary and grayscale images , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[5]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[6]  E. Rosenthal Coarctation of the aorta from fetus to adult: curable condition or life long disease process? , 2005, Heart.

[7]  J. Hennig,et al.  4D phase contrast MRI at 3 T: Effect of standard and blood‐pool contrast agents on SNR, PC‐MRA, and blood flow visualization , 2010, Magnetic resonance in medicine.

[8]  M. Alley,et al.  Bicuspid Aortic Valve : Four-dimensional MR Evaluation of Ascending Aortic Systolic Flow Patterns 1 , 2010 .

[9]  R. Nerem,et al.  Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH oxidase. , 1998, Circulation research.

[10]  Ellen Kuhl,et al.  Computational modelling of electrocardiograms: repolarisation and T-wave polarity in the human heart , 2014, Computer methods in biomechanics and biomedical engineering.

[11]  S. Alper,et al.  Hemodynamic shear stress and its role in atherosclerosis. , 1999, JAMA.

[12]  J. Lasheras The Biomechanics of Arterial Aneurysms , 2007 .

[13]  D. Hurtado,et al.  Gradient flows and variational principles for cardiac electrophysiology: Toward efficient and robust numerical simulations of the electrical activity of the heart , 2014 .

[14]  Xue-Cheng Tai,et al.  Superconvergence for the Gradient of Finite Element Approximations by L2 Projections , 2002, SIAM J. Numer. Anal..

[15]  Jürgen Hennig,et al.  Three‐dimensional analysis of segmental wall shear stress in the aorta by flow‐sensitive four‐dimensional‐MRI , 2009, Journal of magnetic resonance imaging : JMRI.

[16]  M. Langer,et al.  Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR , 2012, Journal of Cardiovascular Magnetic Resonance.

[17]  Kevin M Johnson,et al.  In vivo three‐dimensional MR wall shear stress estimation in ascending aortic dilatation , 2011, Journal of magnetic resonance imaging : JMRI.

[18]  S Glagov,et al.  Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis. , 1994, Atherosclerosis.

[19]  M. Ferguson,et al.  High shear stress influences plaque vulnerability , 2008 .

[20]  A. Barker,et al.  Quantification of Hemodynamic Wall Shear Stress in Patients with Bicuspid Aortic Valve Using Phase-Contrast MRI , 2010, Annals of Biomedical Engineering.

[21]  Michael Markl,et al.  Characterization of Abnormal Wall Shear Stress Using 4D Flow MRI in Human Bicuspid Aortopathy , 2015, Annals of Biomedical Engineering.

[22]  Cristian Tejos,et al.  Quantification of wall shear stress using a finite-element method in multidimensional phase-contrast MR data of the thoracic aorta. , 2015, Journal of biomechanics.

[23]  B. Berk,et al.  Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. , 1998, Arteriosclerosis, thrombosis, and vascular biology.

[24]  Guillermo Bugedo,et al.  Improving the Accuracy of Registration-Based Biomechanical Analysis: A Finite Element Approach to Lung Regional Strain Quantification , 2016, IEEE Transactions on Medical Imaging.

[25]  S. Verma,et al.  Clinical and Pathophysiological Implications of a Bicuspid Aortic Valve , 2002, Circulation.

[26]  P. Turski,et al.  Four-dimensional phase contrast magnetic resonance angiography: potential clinical applications. , 2011, European journal of radiology.

[27]  R. Pettigrew,et al.  Determination of wall shear stress in the aorta with the use of MR phase velocity mapping , 1995, Journal of magnetic resonance imaging : JMRI.

[28]  Theo Arts,et al.  Wall Shear Stress – an Important Determinant of Endothelial Cell Function and Structure – in the Arterial System in vivo , 2006, Journal of Vascular Research.

[29]  D. Ku,et al.  Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation: Positive Correlation between Plaque Location and Low and Oscillating Shear Stress , 1985, Arteriosclerosis.

[30]  J. Hennig,et al.  Time‐resolved 3D MR velocity mapping at 3T: Improved navigator‐gated assessment of vascular anatomy and blood flow , 2007, Journal of magnetic resonance imaging : JMRI.

[31]  M. Langer,et al.  Aortic wall shear stress in Marfan syndrome , 2013, Magnetic resonance in medicine.

[32]  Michael D Hope,et al.  4D flow CMR in assessment of valve-related ascending aortic disease. , 2011, JACC. Cardiovascular imaging.

[33]  Cornelius Weiller,et al.  In vivo assessment of wall shear stress in the atherosclerotic aorta using flow‐sensitive 4D MRI , 2010, Magnetic resonance in medicine.

[34]  Michael Markl,et al.  Reproducibility of flow and wall shear stress analysis using flow‐sensitive four‐dimensional MRI , 2011, Journal of magnetic resonance imaging : JMRI.

[35]  Michael Markl,et al.  4D flow MRI , 2012, Journal of magnetic resonance imaging : JMRI.

[36]  Petter Dyverfeldt,et al.  Assessment of the accuracy of MRI wall shear stress estimation using numerical simulations , 2012, Journal of magnetic resonance imaging : JMRI.

[37]  T. Schaeffter,et al.  Four‐dimensional (4D) flow of the whole heart and great vessels using real‐time respiratory self‐gating , 2009, Magnetic resonance in medicine.

[38]  Michael Markl,et al.  Bicuspid Aortic Valve Is Associated With Altered Wall Shear Stress in the Ascending Aorta , 2012, Circulation. Cardiovascular imaging.

[39]  H. Marquering,et al.  Volumetric arterial wall shear stress calculation based on cine phase contrast MRI , 2015, Journal of magnetic resonance imaging : JMRI.

[40]  J. T. Oden,et al.  On the calculation of consistent stress distributions in finite element approximations , 1971 .