Safety, feasibility and effectiveness of first in‐human administration of muscle‐derived stem/progenitor cells modified with connexin‐43 gene for treatment of advanced chronic heart failure

To assess the safety and efficacy of transendocardial delivery of muscle‐derived stem/progenitor cells with connexin‐43 overexpression (Cx‐43‐MDS/PC) in advanced heart failure (HF).

[1]  J. Kasprzak,et al.  In vitro and in vivo characteristics of connexin 43-modified human skeletal myoblasts as candidates for prospective stem cell therapy for the failing heart. , 2014, International journal of cardiology.

[2]  Roberto Bolli,et al.  Cell Therapy for Heart Failure: A Comprehensive Overview of Experimental and Clinical Studies, Current Challenges, and Future Directions , 2013, Circulation research.

[3]  Daniel Berman,et al.  Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial , 2012, The Lancet.

[4]  R. Roberts,et al.  A double-blind, randomized, controlled, multicenter study to assess the safety and cardiovascular effects of skeletal myoblast implantation by catheter delivery in patients with chronic heart failure after myocardial infarction. , 2011, American heart journal.

[5]  M. Gyöngyösi,et al.  Diagnostic and prognostic value of 3D NOGA mapping in ischemic heart disease , 2011, Nature Reviews Cardiology.

[6]  P. Serruys,et al.  Final results of a phase IIa, randomised, open-label trial to evaluate the percutaneous intramyocardial transplantation of autologous skeletal myoblasts in congestive heart failure patients: the SEISMIC trial. , 2011, EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology.

[7]  E. Marbán,et al.  Intramyocardial injection of autologous cardiospheres or cardiosphere-derived cells preserves function and minimizes adverse ventricular remodeling in pigs with heart failure post-myocardial infarction. , 2011, Journal of the American College of Cardiology.

[8]  L. A. Bonet,et al.  ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012 , 2010, European journal of heart failure.

[9]  S. Grajek,et al.  Influence of bone marrow stem cells on left ventricle perfusion and ejection fraction in patients with acute myocardial infarction of anterior wall: randomized clinical trial: Impact of bone marrow stem cell intracoronary infusion on improvement of microcirculation. , 2010, European heart journal.

[10]  A. Rosenwald,et al.  Biomarkers , Genomics , Proteomics , and Gene Regulation Specific Detection of CD 56 ( NCAM ) Isoforms for the Identification of Aggressive Malignant Neoplasms with Progressive Development , 2010 .

[11]  L. Jordaens,et al.  Four-year follow-up of treatment with intramyocardial skeletal myoblasts injection in patients with ischaemic cardiomyopathy. , 2008, European heart journal.

[12]  O. Alfieri,et al.  The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) Trial: First Randomized Placebo-Controlled Study of Myoblast Transplantation , 2008, Circulation.

[13]  Guy Salama,et al.  Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia , 2007, Nature.

[14]  P. Serruys,et al.  Stress and tissue Doppler echocardiographic evidence of effectiveness of myoblast transplantation in patients with ischaemic heart failure , 2006, European journal of heart failure.

[15]  É. Mousseaux,et al.  Skeletal Myoblast Transplantation in Ischemic Heart Failure: Long-Term Follow-Up of the First Phase I Cohort of Patients , 2006, Circulation.

[16]  F. Prósper,et al.  Autologous skeletal myoblast transplantation in patients with nonacute myocardial infarction: 1-year follow-up. , 2006, The Journal of thoracic and cardiovascular surgery.

[17]  B. Griffith,et al.  Safety and Feasibility of Autologous Myoblast Transplantation in Patients With Ischemic Cardiomyopathy: Four-Year Follow-Up , 2005, Circulation.

[18]  C. Henrikson,et al.  Antiarrhythmic Engineering of Skeletal Myoblasts for Cardiac Transplantation , 2005, Circulation research.

[19]  C. Nienaber,et al.  Transcatheter Transplantation of Autologous Skeletal Myoblasts in Postinfarction Patients with Severe Left Ventricular Dysfunction , 2004, Journal of endovascular therapy : an official journal of the International Society of Endovascular Specialists.

[20]  D. Fiszer,et al.  Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: phase I clinical study with 12 months of follow-up. , 2004, American heart journal.

[21]  C. Murry,et al.  Gene transfer of connexin43 into skeletal muscle. , 2004, Human gene therapy.

[22]  Patrick W Serruys,et al.  Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. , 2003, Journal of the American College of Cardiology.

[23]  F. Prósper,et al.  Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction. , 2003, European heart journal.

[24]  E. Audinat,et al.  Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[25]  A. Hagège,et al.  Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. , 2003, Journal of the American College of Cardiology.

[26]  F. Pagani,et al.  Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. , 2003, Journal of the American College of Cardiology.

[27]  A. Hagège,et al.  Long-Term Efficacy of Myoblast Transplantation on Regional Structure and Function After Myocardial Infarction , 2002, Circulation.

[28]  A. Berrebi,et al.  Cellular therapy reverses myocardial dysfunction. , 2001, The Journal of thoracic and cardiovascular surgery.

[29]  D. Sawyer,et al.  Cell Therapy Attenuates Deleterious Ventricular Remodeling and Improves Cardiac Performance After Myocardial Infarction , 2001, Circulation.

[30]  C. Murry,et al.  Electromechanical coupling between skeletal and cardiac muscle. Implications for infarct repair. , 2000 .

[31]  D. Taylor,et al.  Myogenic cell transplantation improves in vivo regional performance in infarcted rabbit myocardium. , 1999, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.

[32]  L. A. Bonet,et al.  ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012 , 2012, Turk Kardiyoloji Dernegi arsivi : Turk Kardiyoloji Derneginin yayin organidir.

[33]  E. Diethrich,et al.  One-year follow-up of feasibility and safety of the first U.S., randomized, controlled study using 3-dimensional guided catheter-based delivery of autologous skeletal myoblasts for ischemic cardiomyopathy (CAuSMIC study). , 2009, JACC. Cardiovascular interventions.

[34]  Y. Kienast,et al.  Overexpression of connexin 43 using a retroviral vector improves electrical coupling of skeletal myoblasts with cardiac myocytes in vitro. , 2006, BMC cardiovascular disorders.

[35]  Doris A Taylor,et al.  Regenerating functional myocardium: Improved performance after skeletal myoblast transplantation , 1998, Nature Medicine.