Binocular fusion and invariant category learning due to predictive remapping during scanning of a depthful scene with eye movements

How does the brain maintain stable fusion of 3D scenes when the eyes move? Every eye movement causes each retinal position to process a different set of scenic features, and thus the brain needs to binocularly fuse new combinations of features at each position after an eye movement. Despite these breaks in retinotopic fusion due to each movement, previously fused representations of a scene in depth often appear stable. The 3D ARTSCAN neural model proposes how the brain does this by unifying concepts about how multiple cortical areas in the What and Where cortical streams interact to coordinate processes of 3D boundary and surface perception, spatial attention, invariant object category learning, predictive remapping, eye movement control, and learned coordinate transformations. The model explains data from single neuron and psychophysical studies of covert visual attention shifts prior to eye movements. The model further clarifies how perceptual, attentional, and cognitive interactions among multiple brain regions (LGN, V1, V2, V3A, V4, MT, MST, PPC, LIP, ITp, ITa, SC) may accomplish predictive remapping as part of the process whereby view-invariant object categories are learned. These results build upon earlier neural models of 3D vision and figure-ground separation and the learning of invariant object categories as the eyes freely scan a scene. A key process concerns how an object's surface representation generates a form-fitting distribution of spatial attention, or attentional shroud, in parietal cortex that helps maintain the stability of multiple perceptual and cognitive processes. Predictive eye movement signals maintain the stability of the shroud, as well as of binocularly fused perceptual boundaries and surface representations.

[1]  S. Grossberg,et al.  A laminar cortical model of stereopsis and three-dimensional surface perception , 2003, Vision Research.

[2]  S. Grossberg How does the cerebral cortex work? Learning, attention, and grouping by the laminar circuits of visual cortex. , 1999, Spatial vision.

[3]  S. Grossberg,et al.  How Does the Brain Rapidly Learn and Reorganize View- and Positionally-Invariant Object Representations in Inferior Temporal Cortex? , 2011 .

[4]  S. Grossberg,et al.  A neural model of saccadic eye movement control explains task-specific adaptation , 1999, Vision Research.

[5]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[6]  Stephen Grossberg,et al.  A neuromorphic model for achromatic and chromatic surface representation of natural images , 2004, Neural Networks.

[7]  Rüdiger von der Heydt,et al.  Remapping of Border Ownership in the Visual Cortex , 2013, The Journal of Neuroscience.

[8]  Julie D. Golomb,et al.  Attentional Facilitation throughout Human Visual Cortex Lingers in Retinotopic Coordinates after Eye Movements , 2010, The Journal of Neuroscience.

[9]  Y. Koutalos,et al.  Regulation of sensitivity in vertebrate rod photoreceptors by calcium , 1996, Trends in Neurosciences.

[10]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[11]  M. Gazzaniga The Bisected Brain , 1970 .

[12]  F. J. Friedrich,et al.  Effects of parietal injury on covert orienting of attention , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[14]  S. Grossberg Some Psychophysiological and Pharmacological Correlates of a Developmental, Cognitive and Motivational Theory a , 1984, Annals of the New York Academy of Sciences.

[15]  Jillian H. Fecteau,et al.  Exploring the consequences of the previous trial , 2003, Nature Reviews Neuroscience.

[16]  Stephen Grossberg,et al.  Cortical dynamics of three-dimensional surface perception: Binocular and half-occluded scenic images , 1997, Neural Networks.

[17]  S. Grossberg How does the cerebral cortex work? Development, learning, attention, and 3-D vision by laminar circuits of visual cortex. , 2003, Behavioral and cognitive neuroscience reviews.

[18]  S. Grossberg,et al.  View-invariant object category learning, recognition, and search: How spatial and object attention are coordinated using surface-based attentional shrouds , 2009, Cognitive Psychology.

[19]  Shinsuke Shimojo,et al.  Da vinci stereopsis: Depth and subjective occluding contours from unpaired image points , 1990, Vision Research.

[20]  C. Bruce,et al.  Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. , 1990, Journal of neurophysiology.

[21]  E. Fleischer [Physiological basis of stereoscopic vision]. , 1951, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[22]  Z. Pylyshyn The role of location indexes in spatial perception: A sketch of the FINST spatial-index model , 1989, Cognition.

[23]  P. Goldman-Rakic,et al.  Topographic segregation of corticostriatal projections from posterior parietal subdivisions in the macaque monkey , 1991, Neuroscience.

[24]  Jeremy M. Wolfe,et al.  Guided Search 4.0: Current Progress With a Model of Visual Search , 2007, Integrated Models of Cognitive Systems.

[25]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe , 1989, The Journal of comparative neurology.

[26]  Andrew Hollingworth,et al.  Global Transsaccadic Change Blindness During Scene Perception , 2003, Psychological science.

[27]  M. Carrasco Spatial Covert Attention , 2014 .

[28]  Stephen Grossberg,et al.  Neural dynamics of saccadic and smooth pursuit eye movement coordination during visual tracking of unpredictably moving targets , 2012, Neural Networks.

[29]  H. Spekreijse,et al.  Correlates of transsaccadic integration in the primary visual cortex of the monkey. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Heiner Deubel,et al.  Transsaccadic memory of position and form. , 2002, Progress in brain research.

[31]  W. Brown Synthetic Aperture Radar , 1967, IEEE Transactions on Aerospace and Electronic Systems.

[32]  D. Heeger,et al.  The Normalization Model of Attention , 2009, Neuron.

[33]  S. Grossberg Cortical dynamics of three-dimensional figure-ground perception of two-dimensional pictures. , 1997, Psychological review.

[34]  P. Tse,et al.  V3A processes contour curvature as a trackable feature for the perception of rotational motion. , 2007, Cerebral cortex.

[35]  Jan Theeuwes,et al.  Evidence for the predictive remapping of visual attention , 2009, Experimental Brain Research.

[36]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[37]  S. Grossberg,et al.  A neural model of 3D shape-from-texture: Multiple-scale filtering, boundary grouping, and surface filling-in , 2007, Vision Research.

[38]  K. D. Zylan,et al.  Article , 1996, Physiology & Behavior.

[39]  F. J. Friedrich,et al.  Effects of parietal injury on covert orienting of visual attention , 1984 .

[40]  Lynn C. Robertson,et al.  ‘Part-whole’ processing in unilateral brain- damaged patients: Dysfunction of hierarchical organization , 1986, Neuropsychologia.

[41]  D. Melcher Predictive remapping of visual features precedes saccadic eye movements , 2007, Nature Neuroscience.

[42]  Julie D. Golomb,et al.  The Native Coordinate System of Spatial Attention Is Retinotopic , 2008, The Journal of Neuroscience.

[43]  Michiel P. van Oeffelen,et al.  An algorithm for pattern description on the level of relative proximity , 1983, Pattern Recognit..

[44]  S. Yantis,et al.  Transient neural activity in human parietal cortex during spatial attention shifts , 2002, Nature Neuroscience.

[45]  Ken Nakayama,et al.  Serial and parallel processing of visual feature conjunctions , 1986, Nature.

[46]  C. Bundesen A theory of visual attention. , 1990, Psychological review.

[47]  Cécile Beauvillain,et al.  Spatial object representation and its use in planning eye movements , 2005, Experimental Brain Research.

[48]  S Grossberg,et al.  Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentations , 1985, Perception & psychophysics.

[49]  S. Zucker,et al.  Evidence for boundary-specific grouping , 1998, Vision Research.

[50]  J. Duncan Selective attention and the organization of visual information. , 1984, Journal of experimental psychology. General.

[51]  H. Spekreijse,et al.  Intrinsic Cone Adaptation Modulates Feedback Efficiency from Horizontal Cells to Cones , 1999, The Journal of general physiology.

[52]  Diane C. Rogers-Ramachandran,et al.  Psychophysical evidence for boundary and surface systems in human vision , 1998, Vision Research.

[53]  Stephen Grossberg,et al.  A Neural Theory of Punishment and Avoidance , II : Quantitative Theory , 2003 .

[54]  Zijiang J. He,et al.  Surfaces versus features in visual search , 1992, Nature.

[55]  J. Sergent The cerebral balance of power: confrontation or cooperation? , 1982, Journal of experimental psychology. Human perception and performance.

[56]  M. Posner Chronometric explorations of mind : the third Paul M. Fitts lectures, delivered at the University of Michigan, September 1976 , 1978 .

[57]  P. Cavanagh,et al.  Attention-based visual routines: sprites , 2001, Cognition.

[58]  S. Grossberg,et al.  Laminar cortical dynamics of 3D surface perception: Stratification, transparency, and neon color spreading , 2005, Vision Research.

[59]  E. Holst,et al.  Das Reafferenzprinzip , 2004, Naturwissenschaften.

[60]  P. G. Vos,et al.  Configurational effects on the enumeration of dots: Counting by groups , 1982, Memory & cognition.

[61]  Stephen Grossberg,et al.  Neural dynamics of adaptive sensory-motor control : ballistic eye movements , 1986 .

[62]  Vernon B Mountcastle,et al.  Brain Mechanisms for Directed Attention 1 , 1978, Journal of the Royal Society of Medicine.

[63]  M. Sereno,et al.  A human parietal face area contains aligned head-centered visual and tactile maps , 2006, Nature Neuroscience.

[64]  Jon Driver,et al.  Edge-Assignment and Figure–Ground Segmentation in Short-Term Visual Matching , 1996, Cognitive Psychology.

[65]  S. Grossberg,et al.  Neural dynamics of 1-D and 2-D brightness perception: A unified model of classical and recent phenomena , 1988, Perception & psychophysics.

[66]  G. Baylis,et al.  Shape-coding in IT cells generalizes over contrast and mirror reversal, but not figure-ground reversal , 2001, Nature Neuroscience.

[67]  Ohad Ben-Shahar,et al.  Sensitivity to curvatures in orientation-based texture segmentation , 2004, Vision Research.

[68]  S Grossberg,et al.  3-D vision and figure-ground separation by visual cortex , 2010, Perception & psychophysics.

[69]  Joonyeol Lee,et al.  A Normalization Model of Attentional Modulation of Single Unit Responses , 2009, PloS one.

[70]  D. Kahneman,et al.  The reviewing of object files: Object-specific integration of information , 1992, Cognitive Psychology.

[71]  Z Kourtzi,et al.  Representation of Perceived Object Shape by the Human Lateral Occipital Complex , 2001, Science.

[72]  Stephen Grossberg,et al.  Neural dynamics of motion integration and segmentation within and across apertures , 2001, Vision Research.

[73]  S. Grossberg,et al.  Neural dynamics of binocular brightness perception , 1999, Vision Research.

[74]  David Melcher,et al.  Dynamic, object-based remapping of visual features in trans-saccadic perception. , 2008, Journal of vision.

[75]  Stephen Grossberg,et al.  ARTSCENE: A neural system for natural scene classification. , 2009, Journal of vision.

[76]  Laura A. Carlson-Radvansky Memory for relational information across eye movements , 1999, Perception & psychophysics.

[77]  M. Carrasco,et al.  Spatial covert attention increases contrast sensitivity across the CSF: support for signal enhancement , 2000, Vision Research.

[78]  James Elder,et al.  The effect of contour closure on the rapid discrimination of two-dimensional shapes , 1993, Vision Research.

[79]  S. Grossberg,et al.  Neural dynamics of 3-D surface perception: Figure-ground separation and lightness perception , 2000, Perception & psychophysics.

[80]  Julie D. Golomb,et al.  Robustness of the retinotopic attentional trace after eye movements. , 2010, Journal of vision.

[81]  S. Grossberg,et al.  Cortical Dynamics of 3-D Surface Perception: Binocular and Half-Occluded Scenic Images , 1995 .

[82]  Edgar Rubin Visuell wahrgenommene Figuren : Studien in psychologischer Analyse , 1921 .

[83]  Stephen Grossberg,et al.  Adaptive Resonance Theory: How a brain learns to consciously attend, learn, and recognize a changing world , 2013, Neural Networks.

[84]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[85]  K. Fujii,et al.  Visualization for the analysis of fluid motion , 2005, J. Vis..

[86]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[87]  H. Deubel,et al.  Saccade target selection and object recognition: Evidence for a common attentional mechanism , 1996, Vision Research.

[88]  Stephen Grossberg,et al.  Synthetic aperture radar processing by a multiple scale neural system for boundary and surface representation , 1995, Neural Networks.

[89]  James M. Brown,et al.  Shifting attention into and out of objects: Evaluating the processes underlying the object advantage , 2005, Perception & psychophysics.

[90]  Susan L. Franzel,et al.  Guided search: an alternative to the feature integration model for visual search. , 1989, Journal of experimental psychology. Human perception and performance.

[91]  S Grossberg,et al.  Neural dynamics of brightness perception: Features, boundaries, diffusion, and resonance , 1984, Perception & Psychophysics.

[92]  F. A. Miles Binocular Vision and Stereopsis by Ian P. Howard and Brian J. Rogers, Oxford University Press, 1995. £90.00 (736 pages) ISBN 0 19 508476 4. , 1996, Trends in Neurosciences.

[93]  Akira Rinoshika,et al.  Visualization of a car mirror wake , 2006, J. Vis..

[94]  I. Rock,et al.  Perceptual organization and attention , 1992, Cognitive Psychology.

[95]  J. Theeuwes,et al.  Object-based eye movements: The eyes prefer to stay within the same object , 2010, Attention, perception & psychophysics.

[96]  S. McKee,et al.  A contrast ratio constraint on stereo matching , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[97]  S. A. Hillyard,et al.  The Spatial Allocation of Visual Attention as Indexed by Event-Related Brain Potentials , 1987, Human factors.

[98]  A. Zeman Attentional Processing. The Brain's Art of Mindfulness , 1996 .

[99]  S. Grossberg,et al.  Cortical dynamics of contextually cued attentive visual learning and search: spatial and object evidence accumulation. , 2010, Psychological review.

[100]  S. Grossberg,et al.  Texture segregation by visual cortex: Perceptual grouping, attention, and learning , 2007, Vision Research.

[101]  E. J. Tehovnik,et al.  Eye Movements Modulate Visual Receptive Fields of V4 Neurons , 2001, Neuron.

[102]  S. Grossberg Some Psychophysiological and Pharmacological Correlates of A Developmental, Cognitive, and Motivational Theory , 1987 .

[103]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[104]  S. Grossberg Cortical and subcortical predictive dynamics and learning during perception, cognition, emotion and action , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[105]  M. Corbetta,et al.  Erratum to “Translocation machinery for synthesis of integral membrane and secretory proteins in dendritic spines” , 2000, Nature Neuroscience.

[106]  Ken Nakayama,et al.  Brightness perception and filling-in , 1991, Vision Research.

[107]  Stephen Grossberg,et al.  A laminar cortical model for 3D perception of slanted and curved surfaces and of 2D images: development, attention, and bistability , 2004, Vision Research.

[108]  P. Cavanagh,et al.  Predictive remapping of attention across eye movements , 2011, Nature Neuroscience.

[109]  Dorine Vergilino-Perez,et al.  Object structure and saccade planning. , 2004, Brain research. Cognitive brain research.

[110]  R. Desimone,et al.  Interacting Roles of Attention and Visual Salience in V4 , 2003, Neuron.

[111]  M Critchley,et al.  Brain Mechanisms for Directed Attention , 1978, Journal of the Royal Society of Medicine.

[112]  S. Grossberg,et al.  Where’s Waldo? How perceptual, cognitive, and emotional brain processes cooperate during learning to categorize and find desired objects in a cluttered scene , 2014, Front. Integr. Neurosci..

[113]  Stephen Grossberg,et al.  Neural dynamics of surface perception: Boundary webs, illuminants, and shape-from-shading , 1987, Comput. Vis. Graph. Image Process..

[114]  S. Grossberg,et al.  Towards a theory of the laminar architecture of cerebral cortex: computational clues from the visual system. , 2003, Cerebral cortex.

[115]  C W Tyler,et al.  Mechanisms of Stereoscopic Processing: Stereoattention and Surface Perception in Depth Reconstruction , 1995, Perception.

[116]  M. Posner,et al.  The attention system of the human brain. , 1990, Annual review of neuroscience.

[117]  J. Theeuwes,et al.  Gradual Remapping Results in Early Retinotopic and Late Spatiotopic Inhibition of Return , 2010, Psychological science.

[118]  D. C. Beardslee,et al.  Readings in perception , 1958 .

[119]  M. Chun,et al.  Perceptual constraints on implicit learning of spatial context , 2002 .

[120]  S Grossberg,et al.  Cortical dynamics of three-dimensional form, color, and brightness perception: II. Binocular theory , 1988, Perception & psychophysics.

[121]  C L Colby,et al.  Visual, saccade-related, and cognitive activation of single neurons in monkey extrastriate area V3A. , 2000, Journal of neurophysiology.

[122]  Stephex GROSSBERGl Behavioral Contrast in Short Term Memory : Serial Binary Memory Models or Parallel Continuous Memory Models ? , 2003 .

[123]  S. Petersen,et al.  Contributions of the pulvinar to visual spatial attention , 1987, Neuropsychologia.

[124]  S. Grossberg,et al.  Neural dynamics of motion processing and speed discrimination , 1998, Vision Research.

[125]  David E. Irwin Information integration across saccadic eye movements , 1991, Cognitive Psychology.

[126]  S. Grossberg,et al.  A Neural Model of Multimodal Adaptive Saccadic Eye Movement Control by Superior Colliculus , 1997, The Journal of Neuroscience.

[127]  M. Moscovitch,et al.  The parietal cortex and episodic memory: an attentional account , 2008, Nature Reviews Neuroscience.

[128]  L. Fogassi,et al.  Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[129]  Stephen Grossberg,et al.  Neural dynamics of motion grouping: from aperture ambiguity to object speed and direction , 1997 .

[130]  S. Yantis,et al.  A Domain-Independent Source of Cognitive Control for Task Sets: Shifting Spatial Attention and Switching Categorization Rules , 2009, The Journal of Neuroscience.

[131]  S. Grossberg,et al.  Thalamocortical dynamics of the McCollough effect: boundary-surface alignment through perceptual learning , 2002, Vision Research.

[132]  Geoffrey M Ghose,et al.  Attentional modulation of visual responses by flexible input gain. , 2009, Journal of neurophysiology.

[133]  Alexandre Pouget,et al.  Computational approaches to sensorimotor transformations , 2000, Nature Neuroscience.

[134]  Alexandre Pouget,et al.  Basis Functions for Object-Centered Representations , 2003, Neuron.

[135]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[136]  S. Grossberg,et al.  A neural model of surface perception: lightness, anchoring, and filling-in. , 2006, Spatial vision.

[137]  Alan N. Gove,et al.  Brightness perception, illusory contours, and corticogeniculate feedback , 1995, Visual Neuroscience.

[138]  Giovanni Maria Carlomagno,et al.  Heat flux sensors and infrared thermography , 2007, J. Vis..

[139]  S. Grossberg,et al.  Neural dynamics of form perception: boundary completion, illusory figures, and neon color spreading. , 1985, Psychological review.

[140]  R. Andersen,et al.  The influence of the angle of gaze upon the excitability of the light- sensitive neurons of the posterior parietal cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[141]  S. Grossberg Contour Enhancement , Short Term Memory , and Constancies in Reverberating Neural Networks , 1973 .

[142]  Stephen Grossberg,et al.  A massively parallel architecture for a self-organizing neural pattern recognition machine , 1988, Comput. Vis. Graph. Image Process..

[143]  Michael I. Posner,et al.  Structures and Functions of Selective Attention. , 1987 .

[144]  Robert H. Wurtz,et al.  Influence of the thalamus on spatial visual processing in frontal cortex , 2006, Nature.

[145]  M. Sereno,et al.  Retinotopy and Attention in Human Occipital, Temporal, Parietal, and Frontal Cortex , 2008 .

[146]  Alexander B. Bilsky,et al.  Parallel processing of park-whole information in visual search tasks , 1994, Perception & psychophysics.

[147]  M. Chun,et al.  Selective attention modulates implicit learning , 2001, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[148]  R. Zemel,et al.  Inference and computation with population codes. , 2003, Annual review of neuroscience.

[149]  Z. Pylyshyn Visual indexes, preconceptual objects, and situated vision , 2001, Cognition.

[150]  Stephen Grossberg,et al.  A neural model of sequential movement planning and control of eye movements: Item-Order-Rank working memory and saccade selection by the supplementary eye fields , 2012, Neural Networks.

[151]  Aijaz A. Baloch,et al.  A neural model of high-level motion processing: Line motion and formotion dynamics , 1997, Vision Research.

[152]  S. Grossberg,et al.  Normal and amnesic learning, recognition and memory by a neural model of cortico-hippocampal interactions , 1993, Trends in Neurosciences.

[153]  P. H. Schiller,et al.  The role of the primate extrastriate area V4 in vision. , 1991, Science.

[154]  S. Grossberg Cortical dynamics of three-dimensional figure-ground perception of two-dimensional pictures. , 1997 .

[155]  S. Grossberg,et al.  How does a brain build a cognitive code? , 1980, Psychological review.

[156]  Lora T. Likova,et al.  Peak localization of sparsely sampled luminance patterns is based on interpolated 3D surface representation , 2003, Vision Research.

[157]  P. Cz. Handbuch der physiologischen Optik , 1896 .

[158]  D. Melcher Selective attention and the active remapping of object features in trans-saccadic perception , 2009, Vision Research.

[159]  S. Grossberg,et al.  Laminar cortical dynamics of visual form and motion interactions during coherent object motion perception. , 2007, Spatial vision.

[160]  Nancy Kanwisher,et al.  Cerebral Cortex doi:10.1093/cercor/bhr357 Higher Level Visual Cortex Represents Retinotopic, Not Spatiotopic, Object Location , 2011 .

[161]  S. McKee,et al.  Stereo matching precedes dichoptic masking , 1994, Vision Research.

[162]  Stephen Grossberg,et al.  How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades , 2004, Neural Networks.

[163]  Stephen Grossberg,et al.  How does the brain rapidly learn and reorganize view-invariant and position-invariant object representations in the inferotemporal cortex? , 2011, Neural Networks.

[164]  Leslie G. Ungerleider,et al.  Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. , 1994, Cerebral cortex.

[165]  Stephen Grossberg,et al.  Stereopsis and 3D surface perception by spiking neurons in laminar cortical circuits: A method for converting neural rate models into spiking models , 2012, Neural Networks.

[166]  K Nakayama,et al.  Visual attention to surfaces in three-dimensional space. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[167]  P. Cavanagh,et al.  Visual stability based on remapping of attention pointers , 2010, Trends in Cognitive Sciences.

[168]  S. Grossberg,et al.  Neural Dynamics of Gestalt Principles of Perceptual Organization : From Grouping to Shape and Meaning 1 , 2012 .

[169]  Stephen Grossberg,et al.  A neural model of the saccade generator in the reticular formation , 1998, Neural Networks.

[170]  Nicholas C. Foley,et al.  Neural Dynamics of Object-based Multifocal Visual Spatial Attention and Priming: Object Cueing, Useful-field-of-view, and Crowding Cognitive Psychology , 2012 .

[171]  Leslie G. Ungerleider,et al.  Cortical connections of inferior temporal area TEO in macaque monkeys , 1993, The Journal of comparative neurology.

[172]  Gerald Sommer,et al.  Pattern Recognition by Self-Organizing Neural Networks , 1994 .

[173]  P. Howe,et al.  Measuring the Depth Induced by an Opposite-Luminance (but Not Anticorrelated) Stereogram , 2003, Perception.

[174]  J. Pokorny Foundations of Cyclopean Perception , 1972 .

[175]  M. Goldberg,et al.  Spatial processing in the monkey frontal eye field. I. Predictive visual responses. , 1997, Journal of neurophysiology.

[176]  S. Grossberg,et al.  From stereogram to surface: how the brain sees the world in depth. , 2009, Spatial vision.

[177]  Stephen Grossberg,et al.  Cortical dynamics of attentive object recognition, scene understanding, and decision making. , 2013 .

[178]  Stephen Grossberg,et al.  A laminar cortical model of stereopsis and 3D surface perception: closure and da Vinci stereopsis. , 2004, Spatial vision.

[179]  Gordon D. Logan,et al.  THE CODE THEORY OF VISUAL ATTENTION : AN INTEGRATION OF SPACE-BASED AND OBJECT-BASED ATTENTION , 1996 .

[180]  Victor A. F. Lamme,et al.  Separate processing dynamics for texture elements, boundaries and surfaces in primary visual cortex of the macaque monkey. , 1999, Cerebral cortex.

[181]  Stephen Grossberg,et al.  A Theory of Human Memory: Self-Organization and Performance of Sensory-Motor Codes, Maps, and Plans , 1982 .

[182]  D. LaBerge,et al.  Theory of attentional operations in shape identification. , 1989 .

[183]  Stephen Grossberg,et al.  Target Selection by the Frontal Cortex during Coordinated Saccadic and Smooth Pursuit Eye Movements , 2009, Journal of Cognitive Neuroscience.

[184]  Lynn C Robertson,et al.  Inhibition of return and object-based attentional selection. , 2007, Journal of experimental psychology. Human perception and performance.

[185]  S. Grossberg Towards a unified theory of neocortex: laminar cortical circuits for vision and cognition. , 2007, Progress in brain research.

[186]  Fred Rieke,et al.  Review the Challenges Natural Images Pose for Visual Adaptation , 2022 .

[187]  Stephen Grossberg,et al.  How does binocular rivalry emerge from cortical mechanisms of 3-D vision? , 2008, Vision Research.

[188]  S. Grossberg,et al.  Self-Organization of Binocular Disparity Tuning by Reciprocal Corticogeniculate Interactions , 1998, Journal of Cognitive Neuroscience.

[189]  H. Egeth,et al.  Searching for conjunctively defined targets. , 1984, Journal of experimental psychology. Human perception and performance.

[190]  G. Logan The CODE theory of visual attention: an integration of space-based and object-based attention. , 1996, Psychological review.

[191]  R. Desimone,et al.  Attention Increases Sensitivity of V4 Neurons , 2000, Neuron.