Multiobjective model predictive control

This paper proposes a novel model predictive control (MPC) scheme based on multiobjective optimization. At each sampling time, the MPC control action is chosen among the set of Pareto optimal solutions based on a time-varying, state-dependent decision criterion. Compared to standard single-objective MPC formulations, such a criterion allows one to take into account several, often irreconcilable, control specifications, such as high bandwidth (closed-loop promptness) when the state vector is far away from the equilibrium and low bandwidth (good noise rejection properties) near the equilibrium. After recasting the optimization problem associated with the multiobjective MPC controller as a multiparametric multiobjective linear or quadratic program, we show that it is possible to compute each Pareto optimal solution as an explicit piecewise affine function of the state vector and of the vector of weights to be assigned to the different objectives in order to get that particular Pareto optimal solution. Furthermore, we provide conditions for selecting Pareto optimal solutions so that the MPC control loop is asymptotically stable, and show the effectiveness of the approach in simulation examples.

[1]  Giuseppe De Nicolao,et al.  On the utopian approach to the multiobjective LQ problem , 1993 .

[2]  M. Morari,et al.  A geometric algorithm for multi-parametric linear programming , 2003 .

[3]  Riccardo Scattolini,et al.  A receding horizon approach to the multiobjective control problem , 2007, 2007 46th IEEE Conference on Decision and Control.

[4]  T. Johansen,et al.  Further results on multiparametric quadratic programming , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[5]  M. Morari,et al.  Geometric Algorithm for Multiparametric Linear Programming , 2003 .

[6]  T. Shimomura,et al.  Multiobjective control design via successive over-bounding of quadratic terms , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[7]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[8]  G. Maier A Parametric Linear Complementarily Problem , 1972 .

[9]  W. P. M. H. Heemels,et al.  On input-to-state stability of min-max nonlinear model predictive control , 2008, Syst. Control. Lett..

[10]  Alberto Bemporad,et al.  An Algorithm for Approximate Multiparametric Convex Programming , 2006, Comput. Optim. Appl..

[11]  Manfred Morari,et al.  Multiparametric Linear Complementarity Problems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[12]  M. Morari,et al.  Parametric Analysis of Controllers for Constrained Linear Systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[13]  Alberto Bemporad,et al.  Multiobjective model predictive control based on convex piecewise affine costs , 2009, 2009 European Control Conference (ECC).

[14]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[15]  J. B. Rosen,et al.  Inequalities for Stochastic Nonlinear Programming Problems , 1964 .

[16]  Guy P. Nason,et al.  CRM Proceedings and Lecture Notes , 1998 .

[17]  Thomas L. Saaty,et al.  Parametric Objective Function (Part 2) - Generalization , 1955, Oper. Res..

[18]  Richard W. Cottle Monotone solutions of the parametric linear complementarity problem , 1972, Math. Program..

[19]  A. Karbowski,et al.  Optimal Infinite-Horizon Multicriteria Feedback Control of Stationary Systems with Minimax Objectives and Bounded Disturbances , 1999 .

[20]  Alberto Bemporad,et al.  An algorithm for multi-parametric quadratic programming and explicit MPC solutions , 2003, Autom..

[21]  Bart De Schutter,et al.  Equivalence of hybrid dynamical models , 2001, Autom..

[22]  Charles Gide,et al.  Cours d'économie politique , 1911 .

[23]  Duan Li On the minimax solution of multiple linear-quadratic problems , 1990 .

[24]  Alberto Bemporad,et al.  Stabilizing Model Predictive Control of Hybrid Systems , 2006, IEEE Transactions on Automatic Control.

[25]  Yuri B. Shtessel,et al.  Principle of proportional damages in a multiple criteria LQR problem , 1996, IEEE Trans. Autom. Control..

[26]  T. Gál,et al.  Multiparametric Linear Programming , 1972 .

[27]  M. Schechter Polyhedral functions and multiparametric linear programming , 1987 .

[28]  G. Goodwin,et al.  Global analytical model predictive control with input constraints , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[29]  Ikuyo Kaneko,et al.  Isotone solutions of parametric linear complementarity problems , 1977, Math. Program..

[30]  Katta G. Murty,et al.  Linear complementarity, linear and nonlinear programming , 1988 .

[31]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[32]  Alberto Bemporad,et al.  Model predictive control based on linear programming - the explicit solution , 2002, IEEE Transactions on Automatic Control.

[33]  Baichun Xiao The linear complementarity problem with a parametric input , 1995 .

[34]  Komei Fukuda,et al.  An output-sensitive algorithm for multi-parametric LCPs with sufficient matrices , 2008, 0807.2318.

[35]  Alberto Bemporad,et al.  A survey on explicit model predictive control , 2009 .

[36]  Mara Tanelli,et al.  Switched model predictive control for performance enhancement , 2008, Int. J. Control.

[37]  Efstratios N. Pistikopoulos,et al.  An Algorithm for the Solution of Multiparametric Mixed Integer Linear Programming Problems , 2000, Ann. Oper. Res..

[38]  R. A. Danao On the Parametric Linear Complementarity Problem , 1997 .

[39]  Alberto Bemporad,et al.  Robust explicit MPC based on approximate multiparametric convex programming , 2004, IEEE Transactions on Automatic Control.

[40]  Thomas L. Saaty,et al.  Parametric Objective Function (Part 1) , 1954, Oper. Res..

[41]  Yves Smeers,et al.  A new resolution method for the parametric linear complementarity problem , 2001, Eur. J. Oper. Res..

[42]  Klaus Tammer Parametric Linear Complementarity Problems , 1996 .

[43]  Panos M. Pardalos,et al.  A survey of recent developments in multiobjective optimization , 2007, Ann. Oper. Res..

[44]  M. Morari,et al.  On-line Tuning of Controllers for Systems with Constraints , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[45]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[46]  A. Sangiovanni-Vincentelli,et al.  Numerically efficient control of systems with communication constraints , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[47]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .