Minimum distance lower bounds for girth-constrained RA code ensembles

Minimum distance lower bounds are derived using graphical enumeration and integer programming for girth-constrained repeat-accumulate (RA) code ensembles. Moreover, the worst subgraphs in Tanner graphs leading to the minimum distance lower bounds and the probabilities they occur are analyzed.

[1]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[2]  Frank Harary,et al.  Graphical enumeration , 1973 .

[3]  William E. Ryan,et al.  Design of efficiently encodable moderate-length high-rate irregular LDPC codes , 2004, IEEE Transactions on Communications.

[4]  Frank Harary,et al.  Graph Theory , 2016 .

[5]  Li Ping,et al.  Low density parity check codes with semi-random parity check matrix , 1999 .

[6]  Alexander Vardy,et al.  The intractability of computing the minimum distance of a code , 1997, IEEE Trans. Inf. Theory.

[7]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[8]  Yifei Zhang,et al.  Structured IRA Codes: Performance Analysis and Construction , 2007, IEEE Transactions on Communications.

[9]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[10]  Lei Wei,et al.  Several properties of short LDPC codes , 2004, IEEE Trans. Commun..

[11]  H. Jin,et al.  Irregular repeat accumulate codes , 2000 .

[12]  A. Orlitsky,et al.  Stopping sets and the girth of Tanner graphs , 2002, Proceedings IEEE International Symposium on Information Theory,.

[13]  Dariush Divsalar,et al.  Coding theorems for 'turbo-like' codes , 1998 .

[14]  Dariush Divsalar,et al.  Ensemble Weight Enumerators for Protograph LDPC Codes , 2006, 2006 IEEE International Symposium on Information Theory.