Spin-Lattice Coupled Metamagnetism in Frustrated van der Waals Magnet CrOCl.
暂无分享,去创建一个
Zhu-An Xu | Yunhao Lu | P. He | Zhou Liu | G. Cao | Yi Zheng | C. Hua | Qifeng Hu | Jinbo Yang | Shijie Song | Hengzhe Lu | Yuqiang Huang | Man Cheng | Minjie Zhang | Fanggui Wang | Shi-jie Song
[1] Jia Liu,et al. Flexible brain–computer interfaces , 2023, Nature Electronics.
[2] S. Ray,et al. Stimuli assisted electronic, magnetic and optical phase control in CrOBr monolayer , 2022, Physica E: Low-dimensional Systems and Nanostructures.
[3] Qinghua Zhang,et al. Magnetic Phase Transitions and Magnetoelastic Coupling in a Two-Dimensional Stripy Antiferromagnet. , 2022, Nano letters.
[4] Xin Lu,et al. Quantum Hall phase in graphene engineered by interfacial charge coupling , 2021, Nature nanotechnology.
[5] A. Morpurgo,et al. Determining the phase diagram of atomically thin layered antiferromagnet CrCl3 , 2019, Nature Nanotechnology.
[6] Weida Hu,et al. Magnetism and Optical Anisotropy in van der Waals Antiferromagnetic Insulator CrOCl. , 2019, ACS nano.
[7] Xiaodong Xu,et al. Atomically Thin CrCl3: An In-Plane Layered Antiferromagnetic Insulator. , 2019, Nano letters.
[8] Efthimios Kaxiras,et al. Author Correction: Enhancement of interlayer exchange in an ultrathin two-dimensional magnet , 2019, Nature Physics.
[9] Zikang Tang,et al. Super-exchange theory for polyvalent anion magnets , 2019, New Journal of Physics.
[10] Xiang Zhang,et al. Two-dimensional magnetic crystals and emergent heterostructure devices , 2019, Science.
[11] Cheol-Hwan Park,et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3 , 2019, Nature Communications.
[12] Cong Wang,et al. A family of high-temperature ferromagnetic monolayers with locked spin-dichroism-mobility anisotropy: MnNX and CrCX (X = Cl, Br, I; C = S, Se, Te). , 2018, Science bulletin.
[13] Wang Yao,et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2 , 2018, Nature Materials.
[14] K. Novoselov,et al. Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3 , 2018, Nature Electronics.
[15] Yuanbo Zhang,et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 , 2018, Nature.
[16] Bin Xu,et al. 2D Intrinsic Ferromagnets from van der Waals Antiferromagnets. , 2018, Journal of the American Chemical Society.
[17] Michael A. McGuire,et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.
[18] S. Louie,et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.
[19] J. Ryoo,et al. Ising-Type Magnetic Ordering in Atomically Thin FePS3. , 2016, Nano letters.
[20] B. V. van Wees,et al. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride , 2014, 1403.0399.
[21] G. Chern,et al. Spin-Lattice Coupling in Frustrated Antiferromagnets , 2009, 0907.1693.
[22] K.H.J. Buschow,et al. Physics of Magnetism and Magnetic Materials , 2003 .
[23] O. Petrenko,et al. Review/Synthèse: Triangular antiferromagnets , 1997 .
[24] D. Koelling,et al. A technique for relativistic spin-polarised calculations , 1977 .
[25] H. Schäfer,et al. Das Chrom (III)‐oxydchlorid CrOCl , 1961 .
[26] J. Kanamori,et al. Superexchange interaction and symmetry properties of electron orbitals , 1959 .
[27] K. Yosida. On the Antiferromagnetism of Single Crystals , 1951 .
[28] R. Moessner,et al. Geometrical Frustration , 2006 .
[29] I. Dzyaloshinsky. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .