Spin-Lattice Coupled Metamagnetism in Frustrated van der Waals Magnet CrOCl.

The long-range magnetic ordering in frustrated magnetic systems is stabilized by coupling magnetic moments to various degrees of freedom, for example, by enhancing magnetic anisotropy via lattice distortion. Here, the unconventional spin-lattice coupled metamagnetic properties of atomically-thin CrOCl, a van der Waals antiferromagnet with inherent magnetic frustration rooted in the staggered square lattice, are reported. Using temperature- and angle-dependent tunneling magnetoconductance (TMC), in complementary with magnetic torque and first-principles calculations, the antiferromagnetic (AFM)-to-ferrimagnetic (FiM) metamagnetic transitions (MTs) of few-layer CrOCl are revealed to be triggered by collective magnetic moment flipping rather than the established spin-flop mechanism, when external magnetic field (H) enforces a lattice reconstruction interlocked with the five-fold periodicity of the FiM phase. The spin-lattice coupled MTs are manifested by drastic jumps in TMC, which show anomalous upshifts at the transition thresholds and persist much higher above the AFM Néel temperature. While the MTs exhibit distinctive triaxial anisotropy, reflecting divergent magnetocrystalline anisotropy of the c-axis AFM ground state, the resulting FiM phase has an a-c easy plane in which the magnetization axis is freely rotated by H. At the 2D limit, such a field-tunable FiM phase may provide unique opportunities to explore exotic emergent phenomena and novel spintronics devices.

[1]  Jia Liu,et al.  Flexible brain–computer interfaces , 2023, Nature Electronics.

[2]  S. Ray,et al.  Stimuli assisted electronic, magnetic and optical phase control in CrOBr monolayer , 2022, Physica E: Low-dimensional Systems and Nanostructures.

[3]  Qinghua Zhang,et al.  Magnetic Phase Transitions and Magnetoelastic Coupling in a Two-Dimensional Stripy Antiferromagnet. , 2022, Nano letters.

[4]  Xin Lu,et al.  Quantum Hall phase in graphene engineered by interfacial charge coupling , 2021, Nature nanotechnology.

[5]  A. Morpurgo,et al.  Determining the phase diagram of atomically thin layered antiferromagnet CrCl3 , 2019, Nature Nanotechnology.

[6]  Weida Hu,et al.  Magnetism and Optical Anisotropy in van der Waals Antiferromagnetic Insulator CrOCl. , 2019, ACS nano.

[7]  Xiaodong Xu,et al.  Atomically Thin CrCl3: An In-Plane Layered Antiferromagnetic Insulator. , 2019, Nano letters.

[8]  Efthimios Kaxiras,et al.  Author Correction: Enhancement of interlayer exchange in an ultrathin two-dimensional magnet , 2019, Nature Physics.

[9]  Zikang Tang,et al.  Super-exchange theory for polyvalent anion magnets , 2019, New Journal of Physics.

[10]  Xiang Zhang,et al.  Two-dimensional magnetic crystals and emergent heterostructure devices , 2019, Science.

[11]  Cheol-Hwan Park,et al.  Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3 , 2019, Nature Communications.

[12]  Cong Wang,et al.  A family of high-temperature ferromagnetic monolayers with locked spin-dichroism-mobility anisotropy: MnNX and CrCX (X = Cl, Br, I; C = S, Se, Te). , 2018, Science bulletin.

[13]  Wang Yao,et al.  Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2 , 2018, Nature Materials.

[14]  K. Novoselov,et al.  Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3 , 2018, Nature Electronics.

[15]  Yuanbo Zhang,et al.  Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 , 2018, Nature.

[16]  Bin Xu,et al.  2D Intrinsic Ferromagnets from van der Waals Antiferromagnets. , 2018, Journal of the American Chemical Society.

[17]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[18]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[19]  J. Ryoo,et al.  Ising-Type Magnetic Ordering in Atomically Thin FePS3. , 2016, Nano letters.

[20]  B. V. van Wees,et al.  Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride , 2014, 1403.0399.

[21]  G. Chern,et al.  Spin-Lattice Coupling in Frustrated Antiferromagnets , 2009, 0907.1693.

[22]  K.H.J. Buschow,et al.  Physics of Magnetism and Magnetic Materials , 2003 .

[23]  O. Petrenko,et al.  Review/Synthèse: Triangular antiferromagnets , 1997 .

[24]  D. Koelling,et al.  A technique for relativistic spin-polarised calculations , 1977 .

[25]  H. Schäfer,et al.  Das Chrom (III)‐oxydchlorid CrOCl , 1961 .

[26]  J. Kanamori,et al.  Superexchange interaction and symmetry properties of electron orbitals , 1959 .

[27]  K. Yosida On the Antiferromagnetism of Single Crystals , 1951 .

[28]  R. Moessner,et al.  Geometrical Frustration , 2006 .

[29]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .