A Factorisation Theorem in Rewriting Theory

Some computations on a symbolic term M are more judicious than others, for instance the leftmost outermost derivations in the λ-calculus. In order to characterise generically that kind of judicious computations, [M] introduces the notion of external derivations in its axiomatic description of Rewriting Systems: a derivation e : M → P is said to be external when the derivation e; f : M → Q is standard whenever the derivation f : P → Q is standard.

[1]  Jean-Jacques Lévy,et al.  An abstract standardisation theorem , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[2]  S. Lane Categories for the Working Mathematician , 1971 .

[3]  G Boudol Computational semantics of term rewriting systems , 1986 .

[4]  Yves Lafont A new finiteness condition for monoids presented by complete rewriting systems , 1995 .

[5]  David Clark,et al.  Event Structures and Non-Orthogonal Term Graph Rewriting , 1996, Math. Struct. Comput. Sci..

[6]  S. Maclane,et al.  Categories for the Working Mathematician , 1971 .

[7]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[8]  Eugene W. Stark,et al.  Concurrent Transition Systems , 1989, Theor. Comput. Sci..

[9]  Jean-Louis Lassez,et al.  Computational logic: essays in honor of Alan Robinson , 1991 .

[10]  Jean-Jacques Lévy,et al.  Computations in Orthogonal Rewriting Systems, II , 1991, Computational Logic - Essays in Honor of Alan Robinson.

[11]  Walter Tholen,et al.  Categorical Structure of Closure Operators: With Applications to Topology, Algebra and Discrete Mathematics , 1995 .

[12]  G. M. Kelly,et al.  Categories of continuous functors, I , 1972 .

[13]  Horst Herrlich,et al.  Abstract and concrete categories , 1990 .

[14]  Yves Lafont,et al.  Church-Rooser property and homology of monoids , 1991, Mathematical Structures in Computer Science.

[15]  Seung Choi,et al.  ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? J ? ? J ? ? ? ? ? ? ? ? ? ? ? ? ? ? , 2022 .

[16]  Walter Tholen,et al.  Categorical Structure of Closure Operators , 1995 .

[17]  Jan Willem Klop,et al.  Combinatory reduction systems , 1980 .