Ancient horizontal gene transfer

The cornerstone of Charles Darwin's theory of evolution is the vertical inheritance of traits from parent to offspring across successive generations. However, molecular evolutionary biologists have shown that extensive horizontal (also known as lateral) gene transfer (HGT) can occur between distantly related species. Comparative sequence analyses of genomes indicates that the universal tree of life might be at risk because of pervasive, ancient HGT. Considerable debate now ensues about the role of HGT in genome evolution. At stake are a fundamental understanding of how life evolved and a deeper knowledge of the functioning of all genomes, including that of humans.

[1]  S. Osawa,et al.  Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[2]  C. Kurland Something for everyone , 2000, EMBO reports.

[3]  W. Martin,et al.  Mitochondria as We Don't Know Them , 2002 .

[4]  M. Hasegawa,et al.  Secondary absence of mitochondria in Giardia lamblia and Trichomonas vaginalis revealed by valyl-tRNA synthetase phylogeny. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[5]  C. V. Dohlen,et al.  Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts , 2001, Nature.

[6]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[7]  D. Horner,et al.  Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles , 2002, The EMBO journal.

[8]  W. Doolittle,et al.  Evidence that eukaryotic triosephosphate isomerase is of alpha-proteobacterial origin. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[9]  H. Hartman,et al.  The origin of the eukaryotic cell. , 1984, Speculations in science and technology.

[10]  Masasuke Yoshida,et al.  Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[11]  M. Shimada,et al.  Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[12]  C. Kurland,et al.  Why mitochondrial genes are most often found in nuclei. , 2000, Molecular biology and evolution.

[13]  H Philippe,et al.  The evolutionary history of ribosomal protein RpS14: horizontal gene transfer at the heart of the ribosome. , 2000, Trends in genetics : TIG.

[14]  H Philippe,et al.  Reverse gyrase from hyperthermophiles: probable transfer of a thermoadaptation trait from archaea to bacteria. , 2000, Trends in genetics : TIG.

[15]  W. Martin IS SOMETHING WRONG WITH THE TREE OF LIFE , 1996 .

[16]  R. Doolittle,et al.  A naturally occurring horizontal gene transfer from a eukaryote to a prokaryote , 1990, Journal of Molecular Evolution.

[17]  Artem Cherkasov,et al.  Evidence that plant-like genes in Chlamydia species reflect an ancestral relationship between Chlamydiaceae, cyanobacteria, and the chloroplast. , 2002, Genome research.

[18]  B. Snel,et al.  Genome phylogeny based on gene content , 1999, Nature Genetics.

[19]  A. Eyre-Walker Fundamentals of Molecular Evolution (2nd edn) , 2000, Heredity.

[20]  James R. Brown,et al.  Archaea and the prokaryote-to-eukaryote transition. , 1997, Microbiology and molecular biology reviews : MMBR.

[21]  E. Pennisi Is It Time to Uproot the Tree of Life? , 1999, Science.

[22]  James R. Brown,et al.  Evolution of two-component signal transduction. , 2000, Molecular biology and evolution.

[23]  J. Lake,et al.  Genomic evidence for two functionally distinct gene classes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[24]  D. Penny,et al.  Does endo-symbiosis explain the origin of the nucleus? , 2001, Nature Cell Biology.

[25]  R. Overbeek,et al.  The winds of (evolutionary) change: breathing new life into microbiology. , 1996, Journal of bacteriology.

[26]  P. Schimmel,et al.  Origin of mitochondria in relation to evolutionary history of eukaryotic alanyl-tRNA synthetase. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[27]  R F Doolittle,et al.  Determining divergence times with a protein clock: update and reevaluation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[28]  J A Eisen,et al.  Microbial Genes in the Human Genome: Lateral Transfer or Gene Loss? , 2001, Science.

[29]  S. Garcia-Vallvé,et al.  Horizontal gene transfer in bacterial and archaeal complete genomes. , 2000, Genome research.

[30]  P. Raven,et al.  ORIGIN OF EUKARYOTIC CELLS , 1971 .

[31]  E. Conway de Macario,et al.  Discontinuous Occurrence of the hsp70(dnaK) Gene among Archaea and Sequence Features of HSP70 Suggest a Novel Outlook on Phylogenies Inferred from This Protein , 1999, Journal of bacteriology.

[32]  W. Doolittle,et al.  Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[33]  P Bork,et al.  Gene context conservation of a higher order than operons. , 2000, Trends in biochemical sciences.

[34]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[35]  B. Wren Microbial genome analysis: insights into virulence, host adaptation and evolution , 2000, Nature Reviews Genetics.

[36]  A. Roger,et al.  Direct evidence for secondary loss of mitochondria in Entamoeba histolytica. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Philippe Dessen,et al.  Structure and chromosomal distribution of human mitochondrial pseudogenes. , 2002, Genomics.

[38]  C. Bauer,et al.  Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[39]  P. Courvalin,et al.  Gene transfer from bacteria to mammalian cells. , 1995, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[40]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[41]  C. Woese On the evolution of cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[42]  W. Martin Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. , 1999, BioEssays : news and reviews in molecular, cellular and developmental biology.

[43]  P. Thorsness,et al.  Nuclear mutations in Saccharomyces cerevisiae that affect the escape of DNA from mitochondria to the nucleus. , 1993, Genetics.

[44]  F. Robb,et al.  Evolutionary relationships of bacterial and archaeal glutamine synthetase genes , 1994, Journal of Molecular Evolution.

[45]  Sarah A. Teichmann,et al.  Is There a Phylogenetic Signal in Prokaryote Proteins? , 1999, Journal of Molecular Evolution.

[46]  J. Schell,et al.  Transfer and function of T-DNA genes from Agrobacterium Ti and Ri plasmids in plants , 1989, Cell.

[47]  Howard Ochman,et al.  Reconciling the many faces of lateral gene transfer. , 2002, Trends in microbiology.

[48]  John M. Logsdon,et al.  Evolutionary genomics: Thermotoga heats up lateral gene transfer , 1999, Current Biology.

[49]  J D Palmer,et al.  The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Frederic D. Bushman,et al.  Lateral DNA transfer , 2001 .

[51]  B. Palenik The genomics of symbiosis: Hosts keep the baby and the bath water , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[52]  W. Martin,et al.  A nuclear gene of eubacterial origin in Euglena gracilis reflects cryptic endosymbioses during protist evolution. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[53]  C. Kurland,et al.  The Dual Origin of the Yeast Mitochondrial Proteome , 2000, Yeast.

[54]  W. Doolittle,et al.  A kingdom-level phylogeny of eukaryotes based on combined protein data. , 2000, Science.

[55]  H. Philippe,et al.  Archaea sister group of Bacteria? Indications from tree reconstruction artifacts in ancient phylogenies. , 1999, Molecular biology and evolution.

[56]  J. Lake,et al.  Horizontal gene transfer among genomes: the complexity hypothesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[57]  H Philippe,et al.  Where is the root of the universal tree of life? , 1999, BioEssays : news and reviews in molecular, cellular and developmental biology.

[58]  A. Oliff,et al.  Signaling pathways in apoptosis as potential targets for cancer therapy. , 2001, Trends in cell biology.

[59]  H. Philippe,et al.  Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[60]  D. Horner,et al.  A single eubacterial origin of eukaryotic pyruvate: ferredoxin oxidoreductase genes: implications for the evolution of anaerobic eukaryotes. , 1999, Molecular biology and evolution.

[61]  C R Woese,et al.  An archaeal genomic signature. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[62]  D. Horner,et al.  Iron hydrogenases--ancient enzymes in modern eukaryotes. , 2002, Trends in biochemical sciences.

[63]  T. Sicheritz-Pontén,et al.  The genome sequence of Rickettsia prowazekii and the origin of mitochondria , 1998, Nature.

[64]  Purificación López-García,et al.  Symbiosis Between Methanogenic Archaea and δ-Proteobacteria as the Origin of Eukaryotes: The Syntrophic Hypothesis , 1998, Journal of Molecular Evolution.

[65]  G. B. Golding,et al.  Protein-based phylogenies support a chimeric origin for the eukaryotic genome. , 1995, Molecular biology and evolution.

[66]  W. Martin,et al.  The hydrogen hypothesis for the first eukaryote , 1998, Nature.

[67]  P. Forterre,et al.  Evolution of glutamate dehydrogenase genes: Evidence for two paralogous protein families and unusual branching patterns of the archaebacteria in the universal tree of life , 1993, Journal of Molecular Evolution.

[68]  C. Kurland,et al.  Origin and Evolution of the Mitochondrial Proteome , 2000, Microbiology and Molecular Biology Reviews.

[69]  Gary J. Olsen,et al.  Aminoacyl-tRNA Synthetases, the Genetic Code, and the Evolutionary Process , 2000, Microbiology and Molecular Biology Reviews.

[70]  Roderic D. M. Page,et al.  TreeView: an application to display phylogenetic trees on personal computers , 1996, Comput. Appl. Biosci..

[71]  Doolittle Wf Phylogenetic Classification and the Universal Tree , 1999 .

[72]  M. Ragan On surrogate methods for detecting lateral gene transfer. , 2001, FEMS microbiology letters.

[73]  H. Ochman,et al.  Lateral gene transfer and the nature of bacterial innovation , 2000, Nature.

[74]  E Pennisi,et al.  Genome Data Shake Tree of Life , 1998, Science.

[75]  S. Salzberg,et al.  Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima , 1999, Nature.

[76]  J. Gogarten,et al.  Horizontal transfer of ATPase genes--the tree of life becomes a net of life. , 1993, Bio Systems.

[77]  E V Koonin,et al.  Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. , 1998, Trends in genetics : TIG.

[78]  Jianzhi Zhang,et al.  A bacterial antibiotic resistance gene with eukaryotic origins , 1998, Current Biology.

[79]  G. McFadden,et al.  Origins of microsporidia. , 1998, Trends in microbiology.

[80]  W. Martin,et al.  Phylogeny of 33 ribosomal and six other proteins encoded in an ancient gene cluster that is conserved across prokaryotic genomes: influence of excluding poorly alignable sites from analysis. , 2000, International journal of systematic and evolutionary microbiology.

[81]  Radhey S. Gupta Protein Phylogenies and Signature Sequences: A Reappraisal of Evolutionary Relationships among Archaebacteria, Eubacteria, and Eukaryotes , 1998, Microbiology and Molecular Biology Reviews.

[82]  Wen-Hsiung Li,et al.  Fundamentals of molecular evolution , 1990 .

[83]  R. Overbeek,et al.  The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. , 2002, Journal of molecular microbiology and biotechnology.

[84]  Michael J. Stanhope,et al.  Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates , 2001, Nature.

[85]  W. Martin,et al.  How many genes in Arabidopsis come from cyanobacteria? An estimate from 386 protein phylogenies. , 2001, Trends in genetics : TIG.

[86]  L. Orgel,et al.  Phylogenetic Classification and the Universal Tree , 1999 .

[87]  Harald Huber,et al.  A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont , 2002, Nature.

[88]  Gary J Olsen,et al.  Archaeal Genomics: An Overview , 1997, Cell.

[89]  J. Logsdon,et al.  Thermotoga heats up lateral gene transfer. , 1999, Current biology : CB.

[90]  A. Sanangelantoni,et al.  Cloning and sequencing of the gene encoding glutamine synthetase I from the archaeum Pyrococcus woesei: anomalous phylogenies inferred from analysis of archaeal and bacterial glutamine synthetase I sequences , 1993, Journal of bacteriology.

[91]  M. Mirande,et al.  Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[92]  G. Olsen,et al.  Archaeal and bacterial hyperthermophiles: horizontal gene exchange or common ancestry? , 1999, Trends in genetics : TIG.

[93]  Michael J. Stanhope,et al.  Universal trees based on large combined protein sequence data sets , 2001, Nature Genetics.

[94]  R F Doolittle,et al.  Evolution by acquisition: the case for horizontal gene transfers. , 1992, Trends in biochemical sciences.

[95]  C. Kurland,et al.  The global phylogeny of glycolytic enzymes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[96]  M. Lynch,et al.  Organellar genes: why do they end up in the nucleus? , 2000, Trends in genetics : TIG.

[97]  E V Koonin,et al.  Evolution of aminoacyl-tRNA synthetases--analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. , 1999, Genome research.

[98]  E. Koonin,et al.  Origin and evolution of eukaryotic apoptosis: the bacterial connection , 2002, Cell Death and Differentiation.

[99]  Hervé Philippe,et al.  The Root of the Tree of Life in the Light of the Covarion Model , 1999, Journal of Molecular Evolution.

[100]  Sabine Cornelsen,et al.  Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[101]  P. Thorsness,et al.  Escape of DNA from mitochondria to the nucleus in Saccharomyces cerevisiae , 1990, Nature.

[102]  W. Doolittle,et al.  Origin and evolution of the slime molds (Mycetozoa) , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[103]  W. Martin,et al.  Does endo-symbiosis explain the origin of the nucleus? , 2001, Nature Cell Biology.

[104]  M. Ragan Reconciling the many faces of lateral gene transfer - Response from Ragan , 2002 .

[105]  C R Woese,et al.  Classification of methanogenic bacteria by 16S ribosomal RNA characterization. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[106]  W. Doolittle,et al.  The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways , 2000, Molecular microbiology.

[107]  C. Woese,et al.  Phylogenetic structure of the prokaryotic domain: The primary kingdoms , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[108]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[109]  L. Koski,et al.  The Closest BLAST Hit Is Often Not the Nearest Neighbor , 2001, Journal of Molecular Evolution.

[110]  W. Doolittle,et al.  A possible mitochondrial gene in the early-branching amitochondriate protist Trichomonas vaginalis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[111]  E. Koonin,et al.  Horizontal gene transfer in prokaryotes: quantification and classification. , 2001, Annual review of microbiology.

[112]  S. Fitz-Gibbon,et al.  Whole genome-based phylogenetic analysis of free-living microorganisms. , 1999, Nucleic acids research.

[113]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[114]  V. Ramalingaswami The Baby and the Bath Water , 1952, National Medical Journal of India.

[115]  J. R. Brown,et al.  A chimeric origin for eukaryotes re-examined. , 1996, Trends in biochemical sciences.

[116]  W. Doolittle You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. , 1998, Trends in genetics : TIG.

[117]  S. Kanaya,et al.  Origin of eukaryotic cell nuclei by symbiosis of Archaea in Bacteria is revealed by homology-hit analysis , 2001, Nature Cell Biology.

[118]  W. Doolittle,et al.  Horizontal transfer of catalase-peroxidase genes between archaea and pathogenic bacteria. , 2000, Trends in genetics : TIG.

[119]  H. Ochman,et al.  Molecular archaeology of the Escherichia coli genome. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[120]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[121]  Paul Richardson,et al.  The Draft Genome of Ciona intestinalis: Insights into Chordate and Vertebrate Origins , 2002, Science.

[122]  James R. Brown,et al.  Gene Descent, Duplication, and Horizontal Transfer in the Evolution of Glutamyl- and Glutaminyl-tRNA Synthetases , 1999, Journal of Molecular Evolution.

[123]  J. R. Brown,et al.  Genomic and phylogenetic perspectives on the evolution of prokaryotes. , 2001, Systematic biology.

[124]  M Dröge,et al.  Horizontal gene transfer as a biosafety issue: a natural phenomenon of public concern. , 1998, Journal of biotechnology.

[125]  T. Cavalier-smith,et al.  Kingdom protozoa and its 18 phyla. , 1993, Microbiological reviews.

[126]  J. Washington,et al.  Trends in the antimicrobial susceptibility of bacterial respiratory tract pathogens--findings of the Alexander Project 1992-1996. , 1999, Journal of chemotherapy.

[127]  Peer Bork,et al.  Lateral Gene Transfer, Genome Surveys, and the Phylogeny of Prokaryotes , 1999 .

[128]  Jonathan E. Allen,et al.  Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii , 2002, Nature.

[129]  Hyman Hartman,et al.  The origin of the eukaryotic cell: A genomic investigation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[130]  E. Koonin,et al.  The Impact of Comparative Genomics on Our Understanding of Evolution , 2000, Cell.

[131]  T. Tzfira,et al.  Genetic transformation of HeLa cells by Agrobacterium. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[132]  J. Eisen Horizontal gene transfer among microbial genomes: new insights from complete genome analysis. , 2000, Current opinion in genetics & development.