Achieving high utilization with software-driven WAN

We present SWAN, a system that boosts the utilization of inter-datacenter networks by centrally controlling when and how much traffic each service sends and frequently re-configuring the network's data plane to match current traffic demand. But done simplistically, these re-configurations can also cause severe, transient congestion because different switches may apply updates at different times. We develop a novel technique that leverages a small amount of scratch capacity on links to apply updates in a provably congestion-free manner, without making any assumptions about the order and timing of updates at individual switches. Further, to scale to large networks in the face of limited forwarding table capacity, SWAN greedily selects a small set of entries that can best satisfy current demand. It updates this set without disrupting traffic by leveraging a small amount of scratch capacity in forwarding tables. Experiments using a testbed prototype and data-driven simulations of two production networks show that SWAN carries 60% more traffic than the current practice.

[1]  References , 1971 .

[2]  Daniel O. Awduche,et al.  Requirements for Traffic Engineering Over MPLS , 1999, RFC.

[3]  Cheng Jin,et al.  MATE: MPLS adaptive traffic engineering , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[4]  Daniel O. Awduche,et al.  Applicability Statement for Extensions to RSVP for LSP-Tunnels , 2001, RFC.

[5]  Vijay Srinivasan,et al.  RSVP-TE: Extensions to RSVP for LSP Tunnels , 2001, RFC.

[6]  Mikkel Thorup,et al.  Traffic engineering with traditional IP routing protocols , 2002, IEEE Commun. Mag..

[7]  Albert G. Greenberg,et al.  Experience in measuring backbone traffic variability: models, metrics, measurements and meaning , 2002, IMW '02.

[8]  Mikkel Thorup,et al.  Load optimal MPLS routing with N + M labels , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[9]  Ming Zhang,et al.  RR-TCP: a reordering-robust TCP with DSACK , 2003, 11th IEEE International Conference on Network Protocols, 2003. Proceedings..

[10]  Matthew Roughan,et al.  Experience in measuring internet backbone traffic variability: Models metrics, measurements and meaning , 2003 .

[11]  Marina Thottan,et al.  A simple polynomial time framework for reduced-path decomposition in multipath routing , 2004, IEEE INFOCOM 2004.

[12]  Srikanth Kandula,et al.  Walking the tightrope: responsive yet stable traffic engineering , 2005, SIGCOMM '05.

[13]  Dritan Nace,et al.  Computing Optimal Max-Min Fair Resource Allocation for Elastic Flows , 2006, IEEE/ACM Transactions on Networking.

[14]  Srikanth Kandula,et al.  Dynamic load balancing without packet reordering , 2007, CCRV.

[15]  Bruce M. Maggs,et al.  R-BGP: Staying Connected in a Connected World , 2007, NSDI.

[16]  Amin Vahdat,et al.  Hedera: Dynamic Flow Scheduling for Data Center Networks , 2010, NSDI.

[17]  Farnam Jahanian,et al.  Internet inter-domain traffic , 2010, SIGCOMM '10.

[18]  Jean-Philippe Vasseur,et al.  MPLS Traffic Engineering Soft Preemption , 2010, RFC.

[19]  Michael I. Jordan,et al.  Managing data transfers in computer clusters with orchestra , 2011, SIGCOMM.

[20]  Olivier Bonaventure,et al.  Seamless network-wide IGP migrations , 2011, SIGCOMM.

[21]  Gautam Kumar,et al.  FairCloud: sharing the network in cloud computing , 2011, CCRV.

[22]  Sujata Banerjee,et al.  DevoFlow: scaling flow management for high-performance networks , 2011, SIGCOMM.

[23]  A. Rowstron,et al.  Towards predictable datacenter networks , 2011, SIGCOMM.

[24]  Antony I. T. Rowstron,et al.  Better never than late: meeting deadlines in datacenter networks , 2011, SIGCOMM.

[25]  David A. Maltz,et al.  Latency inflation with MPLS-based traffic engineering , 2011, IMC '11.

[26]  Michael Sirivianos,et al.  Inter-datacenter bulk transfers with netstitcher , 2011, SIGCOMM.

[27]  Ajay Mahimkar,et al.  Bandwidth on demand for inter-data center communication , 2011, HotNets-X.

[28]  Albert G. Greenberg,et al.  Sharing the Data Center Network , 2011, NSDI.

[29]  Zhi-Li Zhang,et al.  A first look at inter-data center traffic characteristics via Yahoo! datasets , 2011, 2011 Proceedings IEEE INFOCOM.

[30]  Rick McGeer,et al.  A safe, efficient update protocol for openflow networks , 2012, HotSDN '12.

[31]  Vijay Erramilli,et al.  TailGate: handling long-tail content with a little help from friends , 2012, WWW.

[32]  Haim Kaplan,et al.  How to split a flow? , 2012, 2012 Proceedings IEEE INFOCOM.

[33]  Arjun Singh,et al.  A practical algorithm for balancing the max-min fairness and throughput objectives in traffic engineering , 2012, 2012 Proceedings IEEE INFOCOM.

[34]  David Mazières,et al.  EyeQ: Practical Network Performance Isolation for the Multi-tenant Cloud , 2012, HotCloud.

[35]  David Walker,et al.  Abstractions for network update , 2012, SIGCOMM '12.

[36]  Srikanth Kandula,et al.  Achieving high utilization using software-driven WAN (extended version) , 2013 .

[37]  Urs Hölzle,et al.  B4: experience with a globally-deployed software defined wan , 2013, SIGCOMM.

[38]  Min Zhu,et al.  B4: experience with a globally-deployed software defined wan , 2013, SIGCOMM.