A review of factors influencing the durability of structural bonded timber joints

Adhesive bonding technology has played an essential role in the development and growth of the rehabilitation and repair of timber structures. The ability of a structural joint to maintain satisfactory long-term performance, often in severe environments, is an important requirement of a structural adhesive joint, as the joint should be able to support design loads, under service conditions, for the planned life time of the structure. A number of factors determining the durability of structural adhesive joints have been identified and can be grouped in three categories: environment, materials and stresses. The environment is dominated by temperature and moisture. The materials category includes the adherend, the adhesive, and the inter-phase between them both. The last category refers to the stresses to which the bond is subjected during or after exposure to service environment, affecting both longevity and residual strength. Since this subject in relation to timber bonding is very disperse within the literature, this paper will focus briefly on each of the aforementioned factors, thus providing a general understanding on the factors that influence the durability of bonded timber joints.

[1]  J. Minford Treatise on adhesion and adhesives , 1991 .

[2]  R. Rowell,et al.  Structural bonding of acetylated Scandinavian softwoods for exterior lumber laminates , 1993 .

[3]  Andrea Frangi,et al.  Shear behaviour of bond lines in glued laminated timber beams at high temperatures , 2004, Wood Science and Technology.

[4]  C. B. Vick,et al.  Coupling agent improves durability of PRF bonds to CCA-treated southern pine , 1995 .

[5]  E. Back Oxidative activation of wood surfaces for glue bonding , 1991 .

[6]  Robert J. Ross,et al.  Wood handbook : wood as an engineering material , 2010 .

[7]  J. Comyn,et al.  Structural Adhesive Joints in Engineering , 1984, The Aeronautical Journal (1968).

[8]  Joseph M. Plecnik,et al.  Behavior of Epoxy Repaired Beams under Fire , 1986 .

[9]  G. Davis,et al.  The performance of adhesive systems for structural timbers , 1997 .

[10]  Antonio Pizzi,et al.  Handbook of adhesive technology , 1994 .

[11]  A. V. Pocius,et al.  Adhesion and Adhesives Technology: An Introduction , 1996 .

[12]  A. R. Hutchinson,et al.  Adhesive systems for structural connections in timber , 2001 .

[13]  R. Richard Avent,et al.  Effect of Fire on Epoxy-Repaired Timber , 1984 .

[14]  R. Nussbaum Oxidative activation of wood surfaces by flame treatment , 1993, Wood Science and Technology.

[15]  S. Shaw,et al.  Durability of adhesive bonded joints employing organosilane coupling agents , 1990 .

[16]  Michael K. McMurray,et al.  The effect of time and temperature on flexural creep and fatigue strength of a silica particle filled epoxy resin , 1999 .

[17]  C. Vick,et al.  Reactivity of Hydroxymethylated Resorcinol Coupling Agent as it Affects Durability of Epoxy Bonds to Douglas-fir , 1998 .

[18]  A. Kinloch Adhesion and Adhesives: Science and Technology , 2010 .

[19]  J. Lisperguer,et al.  Strength and durability of phenol-resorcinol-formaldehyde bonds to CCA-treated radiata pine wood , 2005 .

[20]  B. Goodell,et al.  The effect of creosote and copper naphthenate preservative systems on the adhesive bondlines of FRP/glulam composite beams , 2004 .

[21]  A. Pizzi,et al.  Wood hardening by methoxymethyl melamine , 1995, Holz als Roh- und Werkstoff.

[22]  C. Vick,et al.  Cure of Phenol-Formaldehyde Adhesive in the Presence of CCA-Treated Wood by Differential Scanning Calorimetry , 2007 .

[23]  R. Steiger,et al.  Thermal Stability of Wood‐Wood and Wood‐FRP Bonding with Polyurethane and Epoxy Adhesives , 2005 .

[24]  G. Mays,et al.  Adhesives in Civil Engineering , 1992 .

[25]  M. Biswas,et al.  THERMOMECHANICAL PROPERTIES OF EPOXY MORTARS , 1993 .

[26]  Andrea Wheeler,et al.  Resin repairs to timber structures , 1998 .

[27]  R. Nussbaum Natural surface inactivation of Scots pine and Norway spruce evaluated by contact angle measurements , 1999, Holz als Roh- und Werkstoff.

[28]  C. Vick,et al.  Mechanical Interlocking of Adhesive Bonds to CCA-Treated Southern Pine—A Scanning Electron Microscopic Study , 2007 .

[29]  A. R. Hutchinson,et al.  Pull-out behaviour of steel rods bonded into timber , 2001 .

[30]  P. Evans,et al.  Bonding surface-modified Karri and Jarrah with resorcinol formaldehyde , 1993, Holz als Roh- und Werkstoff.

[31]  P. Labosky,et al.  Laminating Creosote-Treated Hardwoods , 2007 .

[32]  R. Hernández Effect of two wood surfacing methods on the gluing properties of sugar maple and white spruce , 1994 .

[33]  Alan A. Marra,et al.  Technology of Wood Bonding : Principles in Practice , 1992 .

[34]  J. G. Broughton,et al.  Variable modulus adhesives: an approach to optimised joint performance , 2005 .

[35]  B. Goodell,et al.  Bond durability characterization of preservative treated wood and E-glass/phenolic composite interfaces , 2003 .

[36]  H. A. Stewart,et al.  Microscopy of Abrasive-Planed and Knife-Planed Surfaces in Wood-Adhesive Bonds , 2007 .

[37]  Anthony J. Kinloch,et al.  Durability of structural adhesives , 1983 .

[38]  A. Singh,et al.  The effect of planing on the microscopic structure of Pinus radiata wood cells in relation to penetration of PVA glue , 2002, Holz als Roh- und Werkstoff.

[39]  Frederick A. Kamke,et al.  Comparative analysis of inactivated wood surfaces , 2004 .

[40]  A. R. Hutchinson,et al.  Effect of timber moisture content on bonded-in rods , 2001 .

[41]  Joseph M. Plecnik,et al.  Temperature Effects on Epoxy Adhesives , 1980 .

[42]  E. Roffael,et al.  Extraktstoffe in Eiche und ihr Einfluß auf die Verleimbarkeit mit alkalischen Phenol-Formaldehydharzen , 1974, Holz als Roh- und Werkstoff.