SIMPLE EXTENDED FORMULATION FOR THE DOMINATING SET POLYTOPE VIA FACILITY LOCATION

In this paper we present an extended formulation for the dominating set polytope via facility location. We show that with this formulation we may describe the dominating set polytope for some class of graphs as cacti graphs, though its description in the natural node variables dimension has been only partially obtained. Moreover, the inequalities describing this polytope have coefficients in {−1, 0, 1}. This is not the case for the dominating set polytope in the node-variables dimension. It is known from [9] that for any integer p, there exists a facet defining inequality having coefficients in {1, . . . , p}. We also show a decomposition theorem by means of 1-sums. Again this decomposition is much simpler with the extended formulation than with the nodevariables formulation given in [10]. We also give a linear time algorithm to solve the minimum dominating set problem in cacti graphs.

[1]  Geir Dahl,et al.  Stable Set Polytopes for a Class of Circulant Graphs , 1999, SIAM J. Optim..

[2]  Manfred W. Padberg,et al.  On the facial structure of set packing polyhedra , 1973, Math. Program..

[3]  D. Chinhyung Cho,et al.  On the Uncapacitated Plant Location Problem. II: Facets and Lifting Theorems , 1983, Math. Oper. Res..

[4]  Vasek Chvátal,et al.  Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..

[5]  O. Ore Theory of Graphs , 1962 .

[6]  Martin Farber,et al.  Domination in Permutation Graphs , 1985, J. Algorithms.

[7]  Lorna Stewart,et al.  Dominating sets in perfect graphs , 1991, Discret. Math..

[8]  Dieter Kratsch,et al.  On the restriction of some NP-complete graph problems to permutation graphs , 1985, FCT.

[9]  Francisco Barahona,et al.  On the Integrality of Some Facility Location Polytopes , 2009, SIAM J. Discret. Math..

[10]  Lonnie Athens ‘Domination’ , 2002 .

[11]  Leslie E. Trotter,et al.  A class of facet producing graphs for vertex packing polyhedra , 1975, Discret. Math..

[12]  Martin Farber,et al.  Domination, independent domination, and duality in strongly chordal graphs , 1984, Discret. Appl. Math..

[13]  Ali Ridha Mahjoub,et al.  On the dominating set polytope , 2008, Eur. J. Comb..

[14]  Mustapha Bouchakour I : composition de graphes et le polytope des absorbants ii: un algorithme de coupes pour le probleme du flots a couts fixes , 1996 .

[15]  Ali Ridha Mahjoub,et al.  One-node cutsets and the dominating set polytope , 1997, Discret. Math..

[16]  Gianpaolo Oriolo,et al.  Clique family inequalities for the stable set polytope of quasi-line graphs , 2003, Discret. Appl. Math..

[17]  Tohru Kikuno,et al.  A linear algorithm for the domination number of a series-parallel graph , 1983, Discret. Appl. Math..

[18]  Gérard Cornuéjols,et al.  Some facets of the simple plant location polytope , 1982, Math. Program..

[19]  George J. Minty,et al.  On maximal independent sets of vertices in claw-free graphs , 1980, J. Comb. Theory B.

[20]  Gérard Cornuéjols,et al.  On the 0, 1 facets of the set covering polytope , 1989, Math. Program..

[21]  Friedrich Eisenbrand,et al.  The stable set polytope of quasi-line graphs , 2010, Comb..

[22]  M. Sánchez-García,et al.  On the set covering polytope:Facets with coefficients in {0, 1, 2, 3} , 1998, Ann. Oper. Res..

[23]  Francisco Barahona,et al.  On a connection between facility location and perfect graphs , 2014, Oper. Res. Lett..

[24]  Igor Vasil'ev,et al.  Computational study of large-scale p-Median problems , 2007, Math. Program..

[25]  S. Hedetniemi,et al.  Domination in graphs : advanced topics , 1998 .

[26]  Anureet Saxena On the Dominating Set Polytope of a Cycle , 2004 .

[27]  Graciela L. Nasini,et al.  The minor inequalities in the description of the set covering polyhedron of circulant matrices , 2014, Math. Methods Oper. Res..

[28]  Najiba Sbihi,et al.  Algorithme de recherche d'un stable de cardinalite maximum dans un graphe sans etoile , 1980, Discret. Math..

[29]  Manfred Padberg,et al.  On the Uncapacitated Plant Location Problem. I: Valid Inequalities and Facets , 1983, Math. Oper. Res..

[30]  Gianpaolo Oriolo,et al.  An algorithmic decomposition of claw-free graphs leading to an O(n3)-algorithm for the weighted stable set problem , 2011, SODA '11.

[31]  Dieter Kratsch,et al.  On Domination Problems for Permutation and Other Graphs , 1987, Theor. Comput. Sci..

[32]  Egon Balas,et al.  On the set covering polytope: II. Lifting the facets with coefficients in {0, 1, 2} , 1989, Math. Program..

[33]  Dieter Kratsch,et al.  Domination on Cocomparability Graphs , 1993, SIAM J. Discret. Math..