Experimental Investigation of the Dynamics of Quantum Discord in Optical Systems

One of the most remarkable properties in quantum systems is the existence of correlations without the classical counterparts.

[1]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[2]  G. Guo,et al.  Experimental investigation of classical and quantum correlations under decoherence. , 2009, Nature communications.

[3]  Guang-Can Guo,et al.  Robust bidirectional links for photonic quantum networks , 2016, Science Advances.

[4]  Giuseppe Compagno,et al.  Entanglement dynamics in superconducting qubits affected by local bistable impurities , 2012, 1408.6887.

[5]  F. F. Fanchini,et al.  System-reservoir dynamics of quantum and classical correlations , 2009, 0910.5711.

[6]  J. P. Woerdman,et al.  Tunable spatial decoherers for polarization-entangled photons. , 2006, Optics letters.

[7]  Maria Mannone,et al.  Comparison of non-Markovianity criteria in a qubit system under random external fields , 2012, 1209.6331.

[8]  R. Eryigit,et al.  Classical memoryless noise-induced maximally discordant mixed separable steady states , 2012, 1207.5354.

[9]  Nicolas Gisin,et al.  Quantum communication , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[10]  A. Acín,et al.  Almost all quantum states have nonclassical correlations , 2009, 0908.3157.

[11]  S. Luo Using measurement-induced disturbance to characterize correlations as classical or quantum , 2008 .

[12]  M. Horodecki,et al.  Local versus nonlocal information in quantum-information theory: Formalism and phenomena , 2004, quant-ph/0410090.

[13]  Yong-Sheng Zhang,et al.  Experimental investigation of the non-Markovian dynamics of classical and quantum correlations , 2010, 1005.4510.

[14]  Davide Girolami,et al.  Converting Coherence to Quantum Correlations. , 2015, Physical review letters.

[15]  Shuangshuang Fu,et al.  Measurement-induced nonlocality. , 2011, Physical review letters.

[16]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[17]  S. Luo Quantum discord for two-qubit systems , 2008 .

[18]  Benjamin Schumacher,et al.  Quantum mutual information and the one-time pad , 2006 .

[19]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[20]  Matthias D. Lang,et al.  Quantum discord and the geometry of Bell-diagonal states. , 2010, Physical review letters.

[21]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[22]  F. F. Fanchini,et al.  Robustness of quantum discord to sudden death , 2009, 0905.3376.

[23]  Guang-Can Guo,et al.  Experimental demonstration of photonic entanglement collapse and revival. , 2009, Physical review letters.

[24]  Gerardo Adesso,et al.  All nonclassical correlations can be activated into distillable entanglement. , 2011, Physical review letters.

[25]  G. Guo,et al.  Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems , 2011, 1109.2677.

[26]  V. Vedral,et al.  Classical and quantum correlations under decoherence , 2009, 0905.3396.

[27]  G. Guo,et al.  Quantum correlation and classical correlation dynamics in the spin-boson model , 2010, 1007.0669.

[28]  Guang-Can Guo,et al.  Experimental recovery of quantum correlations in absence of system-environment back-action , 2013, Nature Communications.

[29]  Maximally entangled mixed-state generation via local operations , 2007, 0705.4152.

[30]  H. Zaraket,et al.  Positive-operator-valued measure optimization of classical correlations (6 pages) , 2004 .

[31]  Yannick Ole Lipp,et al.  Quantum discord as resource for remote state preparation , 2012, Nature Physics.

[32]  T. Paterek,et al.  Unified view of quantum and classical correlations. , 2009, Physical review letters.

[33]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[34]  B. Lanyon,et al.  Experimental quantum computing without entanglement. , 2008, Physical review letters.

[35]  S. Walborn,et al.  Determining the Dynamics of Entanglement , 2009, Science.

[36]  Claudia Benedetti,et al.  EFFECT OF MARKOV AND NON-MARKOV CLASSICAL NOISE ON ENTANGLEMENT DYNAMICS , 2012 .

[37]  J. Piilo,et al.  Sudden transition between classical and quantum decoherence. , 2010, Physical review letters.

[38]  J. Oppenheim,et al.  Thermodynamical approach to quantifying quantum correlations. , 2001, Physical review letters.

[39]  Erika Andersson,et al.  Revival of quantum correlations without system-environment back-action , 2010, 1009.5710.

[40]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[41]  Daniel A. Lidar,et al.  Vanishing quantum discord is necessary and sufficient for completely positive maps. , 2008, Physical review letters.

[42]  Gerardo Adesso,et al.  Experimental entanglement activation from discord in a programmable quantum measurement. , 2013, Physical review letters.

[43]  Hermann Kampermann,et al.  Linking quantum discord to entanglement in a measurement. , 2010, Physical review letters.

[44]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[45]  Animesh Datta,et al.  Interpreting quantum discord through quantum state merging , 2010, ArXiv.

[46]  T. Yu,et al.  Sudden Death of Entanglement , 2009, Science.

[47]  Ming-Liang Hu,et al.  Dynamics of entropic measurement-induced nonlocality in structured reservoirs , 2012, 1201.6430.

[48]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[49]  Č. Brukner,et al.  Necessary and sufficient condition for nonzero quantum discord. , 2010, Physical review letters.

[50]  H. Imai,et al.  Sufficient and necessary condition for zero quantum entropy rates under any coupling to the environment. , 2010, Physical review letters.

[51]  A. Winter,et al.  Quantum, classical, and total amount of correlations in a quantum state , 2004, quant-ph/0410091.

[52]  Mary Beth Rothwell,et al.  High-coherence hybrid superconducting qubit. , 2010, Physical review letters.

[53]  Guang-Can Guo,et al.  Experimental characterization of entanglement dynamics in noisy channels. , 2009, Physical review letters.

[54]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[55]  Dong Zhou,et al.  Disentanglement and decoherence from classical non-Markovian noise: random telegraph noise , 2009, Quantum Inf. Process..

[56]  M. Tiersch,et al.  Evolution equation for quantum entanglement , 2008 .

[57]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.