A variable neighborhood search simheuristic for project portfolio selection under uncertainty

With limited financial resources, decision-makers in firms and governments face the task of selecting the best portfolio of projects to invest in. As the pool of project proposals increases and more realistic constraints are considered, the problem becomes NP-hard. Thus, metaheuristics have been employed for solving large instances of the project portfolio selection problem (PPSP). However, most of the existing works do not account for uncertainty. This paper contributes to close this gap by analyzing a stochastic version of the PPSP: the goal is to maximize the expected net present value of the inversion, while considering random cash flows and discount rates in future periods, as well as a rich set of constraints including the maximum risk allowed. To solve this stochastic PPSP, a simulation-optimization algorithm is introduced. Our approach integrates a variable neighborhood search metaheuristic with Monte Carlo simulation. A series of computational experiments contribute to validate our approach and illustrate how the solutions vary as the level of uncertainty increases.

[1]  Paul C. Ivey,et al.  An R&D options selection model for investment decisions , 2005 .

[2]  Eduardo Fernández,et al.  Many-Objective Portfolio Optimization of Interdependent Projects with 'a priori' Incorporation of Decision-Maker Preferences , 2014 .

[3]  Andreas Ekelhart,et al.  Selecting security control portfolios: a multi-objective simulation-optimization approach , 2016 .

[4]  Xiaoxia Huang,et al.  Optimal project selection with random fuzzy parameters , 2007 .

[5]  Belén Melián Using memory to improve the VNS metaheuristic for the design of SDH/WDM networks , 2006 .

[6]  Eduardo Fernández,et al.  Hybrid metaheuristic approach for handling many objectives and decisions on partial support in project portfolio optimisation , 2015, Inf. Sci..

[7]  Angel A. Juan,et al.  Biased randomization of heuristics using skewed probability distributions: A survey and some applications , 2017, Comput. Ind. Eng..

[8]  Angel A. Juan,et al.  A Survey on Financial Applications of Metaheuristics , 2017, ACM Comput. Surv..

[9]  Andrés L. Medaglia,et al.  A multiobjective evolutionary approach for linearly constrained project selection under uncertainty , 2007, Eur. J. Oper. Res..

[10]  Walter J. Gutjahr,et al.  Multi-objective decision analysis for competence-oriented project portfolio selection , 2010, Eur. J. Oper. Res..

[11]  Rafael Caballero,et al.  Solving a comprehensive model for multiobjective project portfolio selection , 2010, Comput. Oper. Res..

[12]  Robert P. Rooderkerk,et al.  Robust Optimization of the 0-1 Knapsack Problem - Balancing Risk and Return in Assortment Optimization , 2015, Eur. J. Oper. Res..

[13]  Belén Melián-Batista,et al.  Applying the pilot method to improve VNS and GRASP metaheuristics for the design of SDH/WDM networks , 2008, Eur. J. Oper. Res..

[14]  Angel A. Juan,et al.  A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems , 2015 .

[15]  Belén Melián-Batista,et al.  Introduction to the special issue on variable neighborhood search , 2008, J. Heuristics.

[16]  Ahti Salo,et al.  Robust portfolio modeling with incomplete cost information and project interdependencies , 2008, Eur. J. Oper. Res..

[17]  H. Patrick Financial Development and Economic Growth in Underdeveloped Countries , 1966, Economic Development and Cultural Change.

[18]  Steven A. Gabriel,et al.  A multiobjective optimization model for project selection with probabilistic considerations , 2006 .

[19]  Saeed Zolfaghari,et al.  Adaptive temperature control for simulated annealing: a comparative study , 2004, Comput. Oper. Res..

[20]  Richard F. Hartl,et al.  Pareto Ant Colony Optimization: A Metaheuristic Approach to Multiobjective Portfolio Selection , 2004, Ann. Oper. Res..

[21]  Norman P. Archer,et al.  Project portfolio selection through decision support , 2000, Decis. Support Syst..

[22]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[23]  Jean-Philippe Vial,et al.  Robust Optimization , 2021, ICORES.

[24]  Alexander G. Nikolaev,et al.  Simulated Annealing , 2010 .

[25]  Fabien Tricoire,et al.  Multi-directional local search , 2012, Comput. Oper. Res..

[26]  Robert L. Schmidt,et al.  A model for R&D project selection with combined benefit, outcome and resource interactions , 1993 .

[27]  Bruno Urli,et al.  Project portfolio selection model, a realistic approach , 2010, Int. Trans. Oper. Res..

[28]  Barry B. Barrios,et al.  MIRHA: multi-start biased randomization of heuristics with adaptive local search for solving non-smooth routing problems , 2013 .

[29]  Euiho Suh,et al.  Prioritizing telecommunications technologies for long-range R&D planning to the year 2006 , 1994 .

[30]  Masoud Rabbani,et al.  A multi-objective particle swarm optimization for project selection problem , 2010, Expert Syst. Appl..

[31]  Richard F. Hartl,et al.  Pareto ant colony optimization with ILP preprocessing in multiobjective project portfolio selection , 2006, Eur. J. Oper. Res..

[32]  Pierre Hansen,et al.  Variable neighborhood search: Principles and applications , 1998, Eur. J. Oper. Res..

[33]  Walter J. Gutjahr,et al.  Competence-driven project portfolio selection, scheduling and staff assignment , 2008, Central Eur. J. Oper. Res..

[34]  Minghe Sun,et al.  New Multiobjective Metaheuristic Solution Procedures for Capital Investment Planning , 2005, J. Heuristics.

[35]  Wil M. P. van der Aalst,et al.  Business Process Variability Modeling , 2017, ACM Comput. Surv..

[36]  Ahti Salo,et al.  Preference programming for robust portfolio modeling and project selection , 2007, Eur. J. Oper. Res..

[37]  Angel A. Juan,et al.  Combining biased randomization with iterated local search for solving the multidepot vehicle routing problem , 2015, Int. Trans. Oper. Res..

[38]  Kathryn A. Dowsland,et al.  Simulated Annealing , 1989, Encyclopedia of GIS.