Giant voltage control of spin Hall nano-oscillator damping

Physics Department, University of Gothenburg, 412 96 Gothenburg, Sweden NanOsc AB, Electrum 229, 164 40 Kista, Sweden Material and Nanophysics, School of Engineering Sciences, KTH Royal Institute of Technology, Electrum 229, 164 40 Kista, Sweden Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan Center for Spintronics Research Network, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan Center for Innovative Integrated Electronic Systems, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-0845, Japan Center for Science and Innovation in Spintronics, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan ∗e-mail: himanshu.fulara@physics.gu.se; johan.akerman@physics.gu.se.

[1]  J. Åkerman,et al.  Two-dimensional mutually synchronized spin Hall nano-oscillator arrays for neuromorphic computing , 2019, Nature Nanotechnology.

[2]  J. Åkerman,et al.  Spin-orbit torque–driven propagating spin waves , 2019, Science Advances.

[3]  Hyunsoo Yang,et al.  Electric-field control of spin accumulation direction for spin-orbit torques , 2019, Nature Communications.

[4]  Maksim Belyaev,et al.  A New Method of the Pattern Storage and Recognition in Oscillatory Neural Networks Based on Resistive Switches , 2018, Electronics.

[5]  J. Yue,et al.  CMOS compatible W/CoFeB/MgO spin Hall nano-oscillators with wide frequency tunability , 2018, 1803.03032.

[6]  Damien Querlioz,et al.  Vowel recognition with four coupled spin-torque nano-oscillators , 2017, Nature.

[7]  P. Voyles,et al.  Electrical control of metallic heavy-metal/ferromagnet interfacial states , 2017, 1708.06331.

[8]  S. Urazhdin,et al.  Nanoconstriction spin-Hall oscillator with perpendicular magnetic anisotropy , 2017, 1706.05302.

[9]  S. Urazhdin,et al.  Controlling the Spectral Characteristics of a Spin-Current Auto-Oscillator with an Electric Field , 2017, 1702.06638.

[10]  M. Dvornik,et al.  Origin of Magnetization Auto-Oscillations in Constriction-Based Spin Hall Nano-Oscillators , 2017, 1702.04155.

[11]  J. Åkerman,et al.  A 20 nm spin Hall nano-oscillator. , 2017, Nanoscale.

[12]  Q. T. Le,et al.  Low operational current spin Hall nano-oscillators based on NiFe/W bilayers , 2016 .

[13]  Johan Åkerman,et al.  Long-range mutual synchronization of spin Hall nano-oscillators , 2016, Nature Physics.

[14]  H. Ohno,et al.  Critical role of W deposition condition on spin-orbit torque induced magnetization switching in nanoscale W/CoFeB/MgO , 2016 .

[15]  Damien Querlioz,et al.  Spintronic Nanodevices for Bioinspired Computing , 2016, Proceedings of the IEEE.

[16]  Wei Han,et al.  Enhanced spin–orbit torques by oxygen incorporation in tungsten films , 2016, Nature Communications.

[17]  Anders Eklund,et al.  Spin-Torque and Spin-Hall Nano-Oscillators , 2015, Proceedings of the IEEE.

[18]  H. Ohno,et al.  Electric-Field Modulation of Damping Constant in a Ferromagnetic Semiconductor (Ga,Mn)As. , 2015, Physical review letters.

[19]  Hideo Ohno,et al.  Control of magnetism by electric fields. , 2015, Nature nanotechnology.

[20]  Shufeng Zhang,et al.  Reversible control of Co magnetism by voltage-induced oxidation. , 2014, Physical review letters.

[21]  Sergei Urazhdin,et al.  Nanoconstriction-based spin-Hall nano-oscillator , 2014 .

[22]  Uwe Bauer,et al.  Magneto-ionic control of interfacial magnetism. , 2014, Nature materials.

[23]  Shoji Ikeda,et al.  Electric-field effects on magnetic anisotropy and damping constant in Ta/CoFeB/MgO investigated by ferromagnetic resonance , 2014 .

[24]  F. García-Sánchez,et al.  The design and verification of MuMax3 , 2014, 1406.7635.

[25]  S. Urazhdin,et al.  Control of current-induced spin-orbit effects in a ferromagnetic heterostructure by electric field , 2014, 1503.03882.

[26]  Shoji Ikeda,et al.  Magnetization switching in a CoFeB/MgO magnetic tunnel junction by combining spin-transfer torque and electric field-effect , 2014 .

[27]  I. Krivorotov,et al.  Nanowire spin torque oscillator driven by spin orbit torques , 2014, Nature Communications.

[28]  Sadamichi Maekawa,et al.  Rashba Spin-Orbit Anisotropy and the Electric Field Control of Magnetism , 2013, Scientific Reports.

[29]  Yoshishige Suzuki,et al.  Reversible change in the oxidation state and magnetic circular dichroism of Fe driven by an electric field at the FeCo/MgO interface , 2013 .

[30]  S. Urazhdin,et al.  Magnetic nano-oscillator driven by pure spin current. , 2012, Nature materials.

[31]  D. Ralph,et al.  Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction devices. , 2012, Physical review letters.

[32]  H. Ohno,et al.  CoFeB Thickness Dependence of Thermal Stability Factor in CoFeB/MgO Perpendicular Magnetic Tunnel Junctions , 2012, IEEE Magnetics Letters.

[33]  Wei-gang Wang,et al.  Electric-field-assisted switching in magnetic tunnel junctions. , 2012, Nature materials.

[34]  Gang Xiao,et al.  Ferromagnetic resonance and damping properties of CoFeB thin films as free layers in MgO-based magnetic tunnel junctions , 2011 .

[35]  D. Ralph,et al.  Spin-torque ferromagnetic resonance induced by the spin Hall effect. , 2010, Physical review letters.

[36]  H. Ohno,et al.  A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. , 2010, Nature materials.

[37]  Hideo Ohno,et al.  Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co40Fe40B20/Ta structures , 2010 .

[38]  A. Freeman,et al.  Giant modification of the magnetocrystalline anisotropy in transition-metal monolayers by an external electric field. , 2009, Physical review letters.

[39]  A. Tulapurkar,et al.  Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. , 2009, Nature nanotechnology.

[40]  Andrei Slavin,et al.  Microwave power generated by a spin-torque oscillator in the presence of noise , 2007, 0709.4553.

[41]  Andrei Slavin,et al.  Spin wave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet. , 2005, Physical review letters.

[42]  H. Ohno,et al.  Electric-field control of ferromagnetism , 2000, Nature.

[43]  Maksim Belyaev,et al.  Model of an oscillatory neural network with multilevel neurons for pattern recognition , 2018, Electronics.

[44]  Yoichi Shiota,et al.  Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. , 2011, Nature materials.