Algorithmic approaches for genome rearrangement: a review

Genome rearrangement is a new and important research area that studies the gene orders and the evolution of gene families. With the development of fast sequencing techniques, large-scale DNA molecules are investigated with respect to the relative order of genes in them. Contrary to the traditional alignment approach, genome rearrangements are based on comparison of gene orders. Recently, it became a topic capturing wide attention. In this paper, we cover many kinds of rearrangement events such as reversal, transposition, translocation, fussion, fission, and so on. Different types of distances between genomes or chromosomes are discussed. A variety of mathematic models are included

[1]  David A. Christie,et al.  A 3/2-approximation algorithm for sorting by reversals , 1998, SODA '98.

[2]  Pavel A. Pevzner,et al.  Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals , 1995, JACM.

[3]  David Sankoff,et al.  Probability models for genome rearrangement and linear invariants for phylogenetic inference , 1999, RECOMB.

[4]  Blanchette,et al.  Breakpoint Phylogenies. , 1997, Genome informatics. Workshop on Genome Informatics.

[5]  James F. Geer,et al.  Exponentially Accurate Approximations to Piece-Wise Smooth Periodic Functions , 1997 .

[6]  Ian Holyer,et al.  The NP-Completeness of Some Edge-Partition Problems , 1981, SIAM J. Comput..

[7]  R. Ravi,et al.  Of mice and men: algorithms for evolutionary distances between genomes with translocation , 1995, SODA '95.

[8]  Tandy J. Warnow,et al.  A New Fast Heuristic for Computing the Breakpoint Phylogeny and Experimental Phylogenetic Analyses of Real and Synthetic Data , 2000, ISMB.

[9]  Vineet Bafna,et al.  Genome rearrangements and sorting by reversals , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[10]  David Sankoff,et al.  Hybridization and Genome Rearrangement , 1999, CPM.

[11]  Steven Skiena,et al.  Sorting with Fixed-length Reversals , 1996, Discret. Appl. Math..

[12]  Marie-France Sagot,et al.  Further Thoughts on the Syntenic Distance between Genomes , 2002, Algorithmica.

[13]  Michael Q. Zhang,et al.  Current Topics in Computational Molecular Biology , 2002 .

[14]  T. Dobzhansky,et al.  Inversions in the Third Chromosome of Wild Races of Drosophila Pseudoobscura, and Their Use in the Study of the History of the Species. , 1936, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Sridhar Hannenhalli Polynomial-time Algorithm for Computing Translocation Distance between Genomes , 1995, CPM.

[16]  David Sankoff,et al.  The lengths of undiscovered conserved segments in comparative maps , 1998, Mammalian Genome.

[17]  Vineet Bafna,et al.  Sorting by Transpositions , 1998, SIAM J. Discret. Math..

[18]  David A. Christie,et al.  Sorting Permutations by Block-Interchanges , 1996, Inf. Process. Lett..

[19]  Genome Rearrangements Distance by Fusion, Fission, and Transposition is Easy , 2001, SPIRE.

[20]  David A. Bader,et al.  A New Implmentation and Detailed Study of Breakpoint Analysis , 2000, Pacific Symposium on Biocomputing.

[21]  David Sankoff,et al.  Conserved Synteny As a Measure of Genomic Distance , 1996, Discret. Appl. Math..

[22]  Nicholas W. Trân An Easy Case of Sorting by Reversals , 1998, J. Comput. Biol..

[23]  Bernard M. E. Moret,et al.  Finding an Optimal Inversion Median: Experimental Results , 2001, WABI.

[24]  Tandy J. Warnow,et al.  Estimating true evolutionary distances between genomes , 2001, STOC '01.

[25]  W. Ewens,et al.  The chromosome inversion problem , 1982 .

[26]  Nancy A. Jenkins,et al.  Anchored reference loci for comparative genome mapping in mammals , 1993, Nature Genetics.

[27]  D. Sankoff,et al.  Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[28]  David Sankoff,et al.  Phylogenetic Invariants for Genome Rearrangements , 1999, J. Comput. Biol..

[29]  Lenwood S. Heath,et al.  Sorting by Bounded Block-moves , 1998, Discret. Appl. Math..

[30]  David Sankoff,et al.  Edit Distances for Genome Comparisons Based on Non-Local Operations , 1992, CPM.

[31]  Oded Goldreich,et al.  The Minimum-Length Generator Sequence Problem is NP-Hard , 1981, J. Algorithms.

[32]  Alberto Caprara,et al.  Sorting Permutations by Reversals and Eulerian Cycle Decompositions , 1999, SIAM J. Discret. Math..

[33]  P A Pevzner,et al.  Genome sequence comparison and scenarios for gene rearrangements: a test case. , 1995, Genomics.

[34]  Mark Jerrum,et al.  The Complexity of Finding Minimum-Length Generator Sequences , 1985, Theor. Comput. Sci..

[35]  Lenwood S. Heath,et al.  Sorting by Short Block-Moves , 2000, Algorithmica.

[36]  David Sankoff,et al.  Frequency of insertion-deletion, transversion, and transition in the evolution of 5S ribosomal RNA , 1976, Journal of Molecular Evolution.

[37]  David Sankoff,et al.  Early eukaryote evolution based on mitochondrial gene order breakpoints , 2000, RECOMB '00.

[38]  D. Sankoff,et al.  Multiple genome rearrangement , 2007 .

[39]  David Bryant,et al.  A lower bound for the breakpoint phylogeny problem , 2000, J. Discrete Algorithms.

[40]  David Liben-Nowell Gossip is synteny: incomplete gossip and an exact algorithm for syntenic distance , 2001, SODA '01.

[41]  Ron Shamir,et al.  The median problems for breakpoints are NP-complete , 1998, Electron. Colloquium Comput. Complex..

[42]  J. Nadeau,et al.  Lengths of chromosomal segments conserved since divergence of man and mouse. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[43]  T. Dobzhansky,et al.  Inversions in the Chromosomes of Drosophila Pseudoobscura. , 1938, Genetics.

[44]  D. Bryant The Complexity of Calculating Exemplar Distances , 2000 .

[45]  S Heath Lenwood,et al.  Sorting by Short Block-Moves , 1998 .

[46]  David Sankoff,et al.  On the Nadeau-Taylor Theory of Conserved Chromosome Segments , 1997, CPM.

[47]  Haim Kaplan,et al.  Faster and simpler algorithm for sorting signed permutations by reversals , 1997, SODA '97.

[48]  D. Sankoff,et al.  Parametric genome rearrangement. , 1996, Gene.

[49]  Bernard M. E. Moret,et al.  An Empirical Comparison of Phylogenetic Methods on Chloroplast Gene Order Data in Campanulaceae , 2000 .

[50]  Manuel Blum,et al.  on the Problem of Sorting Burnt Pancakes , 1995, Discret. Appl. Math..

[51]  R. Shamir,et al.  Approximation Algorithms for the Median Problem in the Breakpoint Model , 2000 .

[52]  Blanchette,et al.  Phylogenetic Invariants for Metazoan Mitochondrial Genome Evolution. , 1998, Genome informatics. Workshop on Genome Informatics.

[53]  Pavel A. Pevzner,et al.  Transforming men into mice (polynomial algorithm for genomic distance problem) , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[54]  Jeffrey D. Palmer,et al.  Plant mitochondrial DNA evolved rapidly in structure, but slowly in sequence , 2005, Journal of Molecular Evolution.

[55]  D. Sankoff,et al.  Synteny conservation and chromosome rearrangements during mammalian evolution. , 1997, Genetics.

[56]  David Sankoff,et al.  Original Synteny , 1996, CPM.

[57]  Glenn Tesler,et al.  GRIMM: genome rearrangements web server , 2002, Bioinform..

[58]  Alberto Caprara,et al.  Fast practical solution of sorting by reversals , 2000, SODA '00.

[59]  Pavel A. Pevzner,et al.  Computational molecular biology : an algorithmic approach , 2000 .

[60]  Ivan Hal Sudborough,et al.  On the Diameter of the Pancake Network , 1997, J. Algorithms.

[61]  Vineet Bafna,et al.  Sorting Permutations by Transpositions , 1995, SODA.

[62]  Tao Jiang,et al.  On the complexity and approximation of syntenic distance , 1997, RECOMB '97.

[63]  D. Sankoff,et al.  Comparative Genomics: "Empirical And Analytical Approaches To Gene Order Dynamics, Map Alignment And The Evolution Of Gene Families" , 2000 .

[64]  R. Richards,et al.  Counting on comparative maps , 1998 .

[65]  Shietung Peng,et al.  A 2-Approximation Algorithm for Genome Rearrangements by Reversals and Transpositions , 1999, Theor. Comput. Sci..

[66]  Niklas Eriksen,et al.  (1+epsilon)-Approximation of sorting by reversals and transpositions , 2001, Theor. Comput. Sci..

[67]  Guohui Lin,et al.  Signed Genome Rearrangement by Reversals and Transpositions: Models and Approximations , 1999, COCOON.

[68]  R. Gentleman Current Topics in Computational Molecular Biology , 2004 .

[69]  D Sankoff,et al.  Counting on comparative maps. , 1998, Trends in genetics : TIG.

[70]  Ivan Hal Sudborough,et al.  On Sorting by Prefix Reversals and the Diameter of Pancake Networks , 1992, Heinz Nixdorf Symposium.

[71]  Pavel A. Pevzner,et al.  Transforming Cabbage into Turnip: Polynomial Algorithm for Sorting Signed Permutations by Reversals , 1999, J. ACM.

[72]  Martin Aigner,et al.  Sorting by insertion of leading elements , 1987, J. Comb. Theory, Ser. A.

[73]  Christos H. Papadimitriou,et al.  Bounds for sorting by prefix reversal , 1979, Discret. Math..

[74]  David Alan Christie,et al.  Genome rearrangement problems , 1998 .

[75]  S Heath Lenwood,et al.  Subsequence and Run Heuristics for Sorting by Transpositions , 1997 .

[76]  D. Sankoff,et al.  Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution. , 1997, Genetics.

[77]  Alberto Caprara,et al.  On the Practical Solution of the Reversal Median Problem , 2001, WABI.

[78]  D. Dawson,et al.  Comparative Genomics Via Phylogenetic Invariants For Jukes-Cantor Semigroups , 2003 .

[79]  Stephen J. O'Brien,et al.  Genetic Maps: Locus Maps of Complex Genomes , 1990 .

[80]  Nadia El-Mabrouk,et al.  Genome Rearrangement by Reversals and Insertions/Deletions of Contiguous Segments , 2000, CPM.

[81]  David A. Bader,et al.  A Linear-Time Algorithm for Computing Inversion Distance between Signed Permutations with an Experimental Study , 2001, J. Comput. Biol..

[82]  Pavel A. Pevzner,et al.  Towards a Computational Theory of Genome Rearrangements , 1995, Computer Science Today.

[83]  David Sankoff,et al.  Steiner Points in the Space of Genome Rearrangements , 1996, Int. J. Found. Comput. Sci..

[84]  David Sankoff,et al.  Efficient Bounds for Oriented Chromosome Inversion Distance , 1994, CPM.

[85]  P.A. Pevzner,et al.  Open combinatorial problems in computational molecular biology , 1995, Proceedings Third Israel Symposium on the Theory of Computing and Systems.

[86]  E. Lander,et al.  A genetic linkage map of the mouse: current applications and future prospects. , 1993, Science.

[87]  Mathieu Blanchette,et al.  Evolutionary Puzzles: An Introduction to Genome Rearrangement , 2001, International Conference on Computational Science.

[88]  Adam C. Siepel,et al.  An algorithm to enumerate all sorting reversals , 2002, RECOMB '02.

[89]  Li-San Wang,et al.  Exact-IEBP: A New Technique for Estimating Evolutionary Distances between Whole Genomes , 2001, WABI.

[90]  D. Sankoff,et al.  Gene Order Breakpoint Evidence in Animal Mitochondrial Phylogeny , 1999, Journal of Molecular Evolution.

[91]  Robert W. Irving,et al.  Sorting Strings by Reversals and by Transpositions , 2001, SIAM J. Discret. Math..

[92]  S Karlin,et al.  Molecular evolution of herpesviruses: genomic and protein sequence comparisons , 1994, Journal of virology.

[93]  Jon M. Kleinberg,et al.  Structural properties and tractability results for linear synteny , 2004, J. Discrete Algorithms.

[94]  Alberto Caprara,et al.  Formulations and hardness of multiple sorting by reversals , 1999, RECOMB.

[95]  Piotr Berman,et al.  Fast Sorting by Reversal , 1996, CPM.

[96]  Niklas Eriksen (1+epsilon)-Approximation of Sorting by Reversals and Transpositions , 2001, WABI.

[97]  Robert E. Tarjan,et al.  Efficiency of a Good But Not Linear Set Union Algorithm , 1972, JACM.

[98]  Jon Kleinberg,et al.  The Syntenic Diameter of the Space of N-Chromosome Genomes , 2000 .

[99]  Craig A. Stewart,et al.  Introduction to computational biology , 2005 .

[100]  David Sankoff,et al.  Genome rearrangement with gene families , 1999, Bioinform..

[101]  P. Pevzner,et al.  Sorting by Reversals: Genome Rearrangements in Plant Organelles and Evolutionary History of X Chromosome , 1995 .

[102]  David Sankoff,et al.  Exact and approximation algorithms for sorting by reversals, with application to genome rearrangement , 1995, Algorithmica.

[103]  Vineet Bafna,et al.  Sorting permutations by tanspositions , 1995, SODA '95.

[104]  David A. Bader,et al.  A Linear-Time Algorithm for Computing Inversion Distance between Signed Permutations with an Experimental Study , 2001, WADS.

[105]  Rick Durrett,et al.  Genome rearrangement , 2022 .

[106]  David Sankoff,et al.  The Median Problem for Breakpoints in Comparative Genomics , 1997, COCOON.

[107]  David Sankoff,et al.  Conserved segment identification , 1997, RECOMB '97.

[108]  Anne Bergeron,et al.  Experiments in Computing Sequences of Reversals , 2001, WABI.

[109]  P. Berman,et al.  On Some Tighter Inapproximability Results , 1998, Electron. Colloquium Comput. Complex..

[110]  João Meidanis,et al.  Reversal and transposition distance of linear chromosomes , 1998, Proceedings. String Processing and Information Retrieval: A South American Symposium (Cat. No.98EX207).

[111]  Shietung Peng,et al.  A Heuristic Algorithm for Genome Rearrangements , 1997 .

[112]  Anne Bergeron,et al.  A very elementary presentation of the Hannenhalli-Pevzner theory , 2005, Discret. Appl. Math..

[113]  David Sankoff,et al.  Multiple Genome Rearrangement and Breakpoint Phylogeny , 1998, J. Comput. Biol..

[114]  David Bryant,et al.  The complexity of the breakpoint median problem , 1998 .

[115]  Pavel A. Pevzner,et al.  To cut…or not to cut (applications of comparative physical maps in molecular evolution) , 1996, SODA '96.

[116]  Tandy J. Warnow,et al.  New approaches for reconstructing phylogenies from gene order data , 2001, ISMB.

[117]  David Liben-Nowell On the Structure of Syntenic Distance , 2001, J. Comput. Biol..

[118]  David Sankoff,et al.  Exact and Approximation Algorithms for the Inversion Distance Between Two Chromosomes , 1993, CPM.

[119]  David Sankoff,et al.  Multiple genome rearrangements , 1998, RECOMB '98.

[120]  Alberto Caprara,et al.  Sorting by reversals is difficult , 1997, RECOMB '97.