Chapter 17 - Euclidean Structure in Finite Dimensional Normed Spaces
暂无分享,去创建一个
[1] B. Maurey,et al. Chapter 30 - Type, Cotype and K-Convexity , 2003 .
[2] K. Ball. Chapter 4 – Convex Geometry and Functional Analysis , 2001 .
[3] G. Schechtman,et al. Chapter 19 Finite dimensional subspaces of L p , 2001 .
[4] S. Alesker. Description of translation invariant valuations on convex sets with solution of P. McMullen's conjecture , 2001 .
[5] A. Giannopoulos,et al. John's Theorem for an Arbitrary Pair of Convex Bodies , 2001 .
[6] Jean Bourgain,et al. Chapter 5 - Λ P-sets in Analysis: Results, Problems and Related Aspects , 2001 .
[7] J. Lindenstrauss,et al. Handbook of geometry of Banach spaces , 2001 .
[8] Apostolos Giannopoulos,et al. Extremal problems and isotropic positions of convex bodies , 2000 .
[9] S. Alesker. On P. McMullen's Conjecture on Translation Invariant Valuations , 2000 .
[10] V. Milman,et al. Institute for Mathematical Physics Entropy and Asymptotic Geometry of Non{symmetric Convex Bodies Entropy and Asymptotic Geometry of Non-symmetric Convex Bodies , 2022 .
[11] Alexander E. Litvak,et al. Random aspects of high-dimensional convex bodies , 2000 .
[12] G. Paouris. On the isotropic constant of Non-symmetric convex bodies , 2000 .
[13] Alexander E. Litvak,et al. The Flatness Theorem for Nonsymmetric Convex Bodies via the Local Theory of Banach Spaces , 1999, Math. Oper. Res..
[14] Olivier Guédon,et al. Kahane-Khinchine type inequalities for negative exponent , 1999 .
[15] Apostolos Giannopoulos,et al. Isotropic surface area measures , 1999 .
[16] S. Alesker. Continuous rotation invariant valuations on convex sets , 1999, math/9905204.
[17] V. Milman,et al. A Remarkable Measure Preserving Diffeomorphism between two Convex Bodies in ℝn , 1999 .
[18] M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .
[19] H. König,et al. The isotropy constants of the Schatten classes are bounded , 1998 .
[20] M. Rudelson. Distances Between Non-symmetric Convex Bodies and the $$MM^* $$ -estimate , 1998, math/9812010.
[21] Rafael Villa,et al. Concentration of the distance in finite dimensional normed spaces , 1998 .
[22] V. Milman,et al. Averages of norms and quasi-norms , 1998 .
[23] F. Barthe. On a reverse form of the Brascamp-Lieb inequality , 1997, math/9705210.
[24] Isotropic Constants of Schatten Class Spaces , 1998 .
[25] R. Latala. On the Equivalence Between Geometric and Arithmetic Means for Log-Concave Measures , 1998 .
[26] Apostolos Giannopoulos,et al. MEAN WIDTH AND DIAMETER OF PROPORTIONAL SECTIONS OF A SYMMETRIC CONVEX BODY , 1998 .
[27] V. Milman,et al. Convex Geometric Analysis , 1998 .
[28] Y. Gordon,et al. An isomorphic Dvoretzky's theorem for convex bodies , 1998, Studia Mathematica.
[29] Semyon Alesker. Integrals of Smooth and Analytic Functions over Minkowski's Sums of Convex Sets , 1998 .
[30] Global versus local asymptotic theories of finite-dimensional normed spaces , 1997 .
[31] V. Milman,et al. How small can the intersection of a few rotations of a symmetric convex body be , 1997 .
[32] O. Guédon. Gaussian Version of a Theorem of Milman and Schechtman , 1997 .
[33] M. Rudelson. Contact points of convex bodies , 1997 .
[34] Apostolos Giannopoulos,et al. On the diameter of proportional sections of a symmetric convex body , 1997 .
[35] Rolf Schneider,et al. Simple valuations on convex bodies , 1996 .
[36] V. Milman,et al. THE COVERING NUMBERS AND LOW M*-ESTIMATE FOR QUASI-CONVEX BODIES , 1996, math/9605223.
[37] V. Milman,et al. LowM*-Estimates on Coordinate Subspaces☆ , 1996, math/9605218.
[38] A. Giannopoulos. A proportional Dvoretzky-Rogers factorization result , 1996 .
[39] L. Caffarelli. A priori estimates and the geometry of the Monge Ampere equation , 1995 .
[40] Daniel A. Klain. A short proof of Hadwiger's characterization theorem , 1995 .
[41] R. McCann. Existence and uniqueness of monotone measure-preserving maps , 1995 .
[42] Estimates of the weak distance between finite-dimensional Banach spaces , 1995 .
[43] M. Talagrand. Sections of smooth convex bodies via majorizing measures , 1995 .
[44] J. Bastero,et al. An extension of Milman's reverse Brunn-Minkowski inequality , 1995, math/9501210.
[45] Gideon Schechtman,et al. An 'isomorphic' version of Dvoretzky's theorem , 1995 .
[46] Isomorphic euclidean regularization of quasi-norms in Rn , 1995 .
[47] A. Giannopoulos. A NOTE ON THE BANACH-MAZUR DISTANCE TO THE CUBE , 1995 .
[48] S. Dar. Remarks on Bourgain’s Problem on Slicing of Convex Bodies , 1995 .
[49] K. Ball. CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .
[50] L. Hörmander. Notions of Convexity , 1994 .
[51] V. P. Khavin,et al. Linear and complex analysis problem book 3 , 1994 .
[52] Yehoram Gordon,et al. Local structure theory for quasi-normed spaces , 1994 .
[53] Hyperplane conjecture for quotient spaces of , 1994 .
[54] M. Junge. Proportional Subspaces of Spaces with Unconditional Basis Have Good Volume Properties , 1993, math/9312208.
[55] M. Junge. Hyperplane conjecture for quotient spaces of L p , 1993, math/9312207.
[56] Jörg M. Wills,et al. Handbook of Convex Geometry , 1993 .
[57] Jean Bourgain,et al. Approximating the ball by a minkowski sum of segments with equal length , 1993, Discret. Comput. Geom..
[58] Gerold Wagner. On a new method for constructing good point sets on spheres , 1993, Discret. Comput. Geom..
[59] J. Lindenstrauss,et al. The Local Theory of Normed Spaces and its Applications to Convexity , 1993 .
[60] Vitali Milman,et al. Dvoretzky's theorem — Thirty years later , 1992 .
[61] O. Palmon,et al. The only convex body with extremal distance from the ball is the simplex , 1992 .
[62] Keith Ball,et al. Markov chains, Riesz transforms and Lipschitz maps , 1992 .
[63] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[64] J. Bourgain. On the distribution of polynomials on high dimensional convex sets , 1991 .
[65] Computing summing norms and type constants on few vectors , 1991 .
[66] V. Milman. Some applications of duality relations , 1991 .
[67] M. Talagrand,et al. Probability in Banach spaces , 1991 .
[68] Keith Ball,et al. Normed spaces with a weak-Gordon-Lewis property , 1991 .
[69] S. Szarek. On the geometry of the Banach-Mazur compactum , 1991 .
[70] V. Milman. Geometry of Banach Spaces: A note on a low M *-estimate , 1991 .
[71] S. Szarek. Spaces with large distance to l∞n and random matrices , 1990 .
[72] F Tricerri. Advances in differential geometry and topology , 1990 .
[73] M. Gromov,et al. Convex sets and K?ahler manifolds , 1990 .
[74] K. Ball. Ellipsoids of maximal volume in convex bodies , 1990, math/9201217.
[75] A. Pajor,et al. On the Blaschke-Santaló inequality , 1990 .
[76] W. T. Gowers. Symmetric block bases of sequences with large average growth , 1990 .
[77] M. Talagrand. Embedding subspaces of L1 into l1N , 1990 .
[78] Normalized symmetric functions, Newton's inequalities, and a new set of stronger inequalities , 1989 .
[79] K. Ball. Shadows of convex bodies , 1989, math/9201204.
[80] Keith Ball,et al. Volume Ratios and a Reverse Isoperimetric Inequality , 1989, math/9201205.
[81] J. Lindenstrauss,et al. Approximation of zonoids by zonotopes , 1989 .
[82] J. Linhart,et al. Approximation of a ball by zonotopes using uniform distribution on the sphere , 1989 .
[83] J. Bourgain. Bounded orthogonal systems and the Λ(p)-set problem , 1989 .
[84] Symmetric block bases in finite-dimensional normed spaces , 1989 .
[85] G. Schechtman. A remark concerning the dependence on ɛ in dvoretzky's theorem , 1989 .
[86] N. Tomczak-Jaegermann. Banach-Mazur distances and finite-dimensional operator ideals , 1989 .
[87] G. Pisier. The volume of convex bodies and Banach space geometry , 1989 .
[88] V. Milman,et al. Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space , 1989 .
[89] J. Lindenstrauss,et al. Almost euclidean sections in spaces with a symmetric basis , 1989 .
[90] M. Talagrand,et al. An “isomorphic” version of the sauer-shelah lemma and the banach-mazur distance to the cube , 1989 .
[91] Jean Bourgain,et al. Estimates related to steiner symmetrizations , 1989 .
[92] A. Pajor,et al. On santaló's inequality , 1989 .
[93] Jean Bourgain,et al. The Banach-Mazur distance to the cube and the Dvoretzky-Rogers factorization , 1988 .
[94] J. Lindenstrauss,et al. Distribution of points on spheres and approximation by zonotopes , 1988 .
[95] Y. Gordon. Gaussian Processes and Almost Spherical Sections of Convex Bodies , 1988 .
[96] Y. Gordon. On Milman's inequality and random subspaces which escape through a mesh in ℝ n , 1988 .
[97] J. Lindenstrauss,et al. Minkowski sums and symmetrizations , 1988 .
[98] V. Milman,et al. A few observations on the connections between local theory and some other fields , 1988 .
[99] Vitali Milman,et al. Isomorphic symmetrization and geometric inequalities , 1988 .
[100] Y. Gordon,et al. ZONOIDS WITH MINIMAL VOLUME-PRODUCT- A NEW PROOF , 1988 .
[101] J. Demailly. Nombres de Lelong généralisés, théorèmes d'intégralité et d'analyticité , 1987 .
[102] G. Pisier. ASYMPTOTIC THEORY OF FINITE DIMENSIONAL NORMED SPACES (Lecture Notes in Mathematics 1200) , 1987 .
[103] V. Milman,et al. New volume ratio properties for convex symmetric bodies in ℝn , 1987 .
[104] G. Schechtman. More on embedding subspaces of $L_p$ in $l^n_r$ , 1987 .
[105] Dualité des nombres d'entropie pour des opérateurs à valeurs dans un espace de Hilbert , 1987 .
[106] The weak distance between Banach spaces with a symmetric basis. , 1987 .
[107] Jean Bourgain,et al. ON HIGH DIMENSIONAL MAXIMAL FUNCTIONS ASSOCIATED TO CONVEX BODIES , 1986 .
[108] M. Meyer. Une Caracterisation Volumique de Certains Espaces Normes de Dimension Finie , 1986 .
[109] S. Reisner. Zonoids with minimal volume-product , 1986 .
[110] Gilles Pisier,et al. Banach spaces with a weak cotype 2 property , 1986 .
[111] Jean Bourgain,et al. On hilbertian subsets of finite metric spaces , 1986 .
[112] A. Pajor,et al. Subspaces of small codimension of finite-dimensional Banach spaces , 1986 .
[113] V. Milman,et al. Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .
[114] Jean Bourgain,et al. Distances between normed spaces, their subspaces and quotient spaces , 1986 .
[115] Jean Bourgain,et al. On type of metric spaces , 1986 .
[116] J. Lindenstrauss,et al. On The Banach-Mazur Distance Between Spaces Having an Unconditional Basis , 1986 .
[117] G. Pisier. Probabilistic methods in the geometry of Banach spaces , 1986 .
[118] Stefan Rolewicz,et al. Metric Linear Spaces , 1985 .
[119] V. Milman,et al. A quantitative finite-dimensional krivine theorem , 1985 .
[120] S. Szarek,et al. The cotype constant and an almost euclidean decomposition for finite-dimensional normed spaces , 1985 .
[121] Stephen J. Dilworth,et al. The dimension of Euclidean subspaces of quasi-normed spaces , 1985, Mathematical Proceedings of the Cambridge Philosophical Society.
[122] V. Milman,et al. Almost Euclidean quotient spaces of subspaces of a finite-dimensional normed space , 1985 .
[123] V. Milman,et al. Random subspaces of proportional dimension of finite dimensional normed spaces: Approach through the isoperimetric inequality , 1985 .
[124] W. B. Johnson,et al. Extensions of Lipschitz mappings into Hilbert space , 1984 .
[125] N. Tomczak-Jaegermann. The Weak Distance between Finite-Dimensional Banach Spaces , 1984 .
[126] A. Beck,et al. Conference on Modern Analysis and Probability , 1984 .
[127] Finite-dimensional Banach spaces with symmetry constant of order √n , 1984 .
[128] N. Alon,et al. Embedding ofl∞k in finite dimensional Banach spaces , 1983 .
[129] S. Szarek. The finite dimensional basis problem with an appendix on nets of Grassmann manifolds , 1983 .
[130] Distances between certain symmetric spaces , 1983 .
[131] M. Gromov,et al. A topological application of the isoperimetric inequality , 1983 .
[132] N. Tomczak-Jaegermann. The Banach-Mazur distance between symmetric spaces , 1983 .
[133] Gilles Pisier,et al. On the Dimension of the l n p -Subspaces of Banach Spaces, for 1 p < 2 , 1983 .
[134] Gilles Pisier,et al. On the dimension of the ⁿ_{}-subspaces of Banach spaces, for 1≤<2 , 1983 .
[135] William B. Johnson,et al. Embeddinglpm intol1n , 1982 .
[136] W. J. Thron,et al. Encyclopedia of Mathematics and its Applications. , 1982 .
[137] Gilles Pisier,et al. Holomorphic semi-groups and the geometry of Banach spaces , 1982 .
[138] G. Schechtman. Lévy type inequality for a class of finite metric spaces , 1982 .
[139] W. Woyczynski,et al. Martingale theory in harmonic analysis and Banach spaces : proceedings of the NSF-CBMS Conference held at the Cleveland State University, Cleveland, Ohio, July 13-17, 1981 , 1982 .
[140] Yoav Benyamini,et al. Random factorization of operators between Banach spaces , 1981 .
[141] V. Milman,et al. The distance between certainn-dimensional Banach spaces , 1981 .
[142] E. Gluskin,et al. Diameter of the Minkowski compactum is approximately equal to n , 1981 .
[143] Continuous translation invariant valuations on the space of compact convex sets , 1980 .
[144] D. Hensley. Slicing convex bodies—bounds for slice area in terms of the body’s covariance , 1980 .
[145] V. Milman,et al. Unconditional and symmetric sets inn-dimensional normed spaces , 1980 .
[146] H. König. Type constants and (q, 2)-summing norms defined byn vectors , 1980 .
[147] Nicole Tomczak-Jaegermann,et al. On nearly euclidean decomposition for some classes of Banach spaces , 1980 .
[148] N. Tomczak-Jaegermann. Computing 2-summing norm with few vectors , 1979 .
[149] Nicole Tomczak-Jaegermann,et al. Projections onto Hilbertian subspaces of Banach spaces , 1979 .
[150] D. R. Lewis. Ellipsoids defined by Banach ideal norms , 1979 .
[151] Sur les espaces de Banach de dimension finie à distance extrêmale d'un espace euclidien, d'après V. D. Milman et H. Wolfson , 1979 .
[152] Vitali Milman,et al. Minkowski spaces with extremal distance from the Euclidean space , 1978 .
[153] N. Tomczak-Jaegermann. The Banach-Mazur distance between the trace classes ⁿ_{} , 1978 .
[154] P. McMullen. Valuations and Euler-Type Relations on Certain Classes of Convex Polytopes , 1977 .
[155] Charles M. Newman,et al. On uncomplemented subspaces ofLp, 1 , 1977 .
[156] B. S. Kašin,et al. DIAMETERS OF SOME FINITE-DIMENSIONAL SETS AND CLASSES OF SMOOTH FUNCTIONS , 1977 .
[157] L. E. Dor,et al. Potentials and isometric embeddings inL1 , 1976 .
[158] T. Figiel,et al. The dimension of almost spherical sections of convex bodies , 1976 .
[159] E. Lieb,et al. Best Constants in Young's Inequality, Its Converse, and Its Generalization to More than Three Functions , 1976 .
[160] G. Pisier,et al. Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach , 1976 .
[161] T. Figiel. A short proof of Dvoretzky's theorem on almost spherical sections of convex bodies , 1976 .
[162] C. Borell. The Brunn-Minkowski inequality in Gauss space , 1975 .
[163] P. Mani,et al. Almost ellipsoidal sections and projections of convex bodies , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.
[164] A. Szankowski. On Dvoretzky’s theorem on almost spherical sections of convex bodies , 1974 .
[165] J. Hoffmann-jorgensen. Sums of independent Banach space valued random variables , 1974 .
[166] Per Enflo,et al. A counterexample to the approximation problem in Banach spaces , 1973 .
[167] Stanisław Kwapień,et al. Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients , 1972 .
[168] D. Vere-Jones. Markov Chains , 1972, Nature.
[169] V. Milman. New proof of the theorem of A. Dvoretzky on intersections of convex bodies , 1971 .
[170] E. Bolker. A class of convex bodies , 1969 .
[171] L. H. Harper. Optimal numberings and isoperimetric problems on graphs , 1966 .
[172] C. Petty. Surface area of a convex body under affine transformations , 1961 .
[173] A. Dvoretzky,et al. A THEOREM ON CONVEX BODIES AND APPLICATIONS TO BANACH SPACES. , 1959, Proceedings of the National Academy of Sciences of the United States of America.
[174] H. Hadwiger. Vorlesungen über Inhalt, Oberfläche und Isoperimetrie , 1957 .
[175] H. Knothe. Contributions to the theory of convex bodies. , 1957 .
[176] P. Levy,et al. Problèmes concrets d'analyse fonctionnelle , 1952 .
[177] C. Rogers,et al. Absolute and Unconditional Convergence in Normed Linear Spaces. , 1950, Proceedings of the National Academy of Sciences of the United States of America.
[178] E. Schmidt. Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie. I , 1948 .
[179] C. Carathéodory,et al. Zwei Beweise des Satzes, daß der Kreis unter allen Figuren gleichen Umfanges den größten Inhalt hat , 1909 .