Harvesting biohydrogen from toxic wastewater using isolated strain

[1]  Duu-Jong Lee,et al.  Enrichment strategy to select functional consortium from mixed cultures: Consortium from rumen liquor for simultaneous cellulose degradation and hydrogen production , 2010 .

[2]  Joo-Hwa Tay,et al.  Critical assessment of anaerobic processes for continuous biohydrogen production from organic wastewater , 2010 .

[3]  Duu-Jong Lee,et al.  Biological hydrogen production from phenol-containing wastewater using Clostridium butyricum , 2010 .

[4]  Duu-Jong Lee,et al.  Biohydrogen production from cellobiose in phenol and cresol-containing medium using Clostridium sp. R1 , 2010 .

[5]  Jo-Shu Chang,et al.  Biohydrogen production from cellulosic hydrolysate produced via temperature-shift-enhanced bacterial cellulose hydrolysis. , 2009, Bioresource technology.

[6]  Wan-Qian Guo,et al.  Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16 , 2009 .

[7]  Jo-Shu Chang,et al.  Biohydrogen production in a three-phase fluidized bed bioreactor using sewage sludge immobilized by ethylene-vinyl acetate copolymer. , 2009, Bioresource technology.

[8]  Yuan Lu,et al.  Perturbation of formate pathway for hydrogen production by expressions of formate hydrogen lyase and its transcriptional activator in wild Enterobacter aerogenes and its mutants , 2009 .

[9]  P. N. Sarma,et al.  Acidogenic fermentation of vegetable based market waste to harness biohydrogen with simultaneous stabilization. , 2009, Bioresource technology.

[10]  D. J. Lee,et al.  Carbon balance of anaerobic granulation process: carbon credit. , 2009, Bioresource technology.

[11]  H. Hou,et al.  Statistical optimization of process parameters on biohydrogen production from glucose by Clostridium sp. Fanp2. , 2008, Bioresource technology.

[12]  Z. Ren,et al.  Characterization of the cellulolytic and hydrogen‐producing activities of six mesophilic Clostridium species , 2007, Journal of applied microbiology.

[13]  R. Jain,et al.  Clostridium nitrophenolicum sp. nov., a novel anaerobic p-nitrophenol-degrading bacterium, isolated from a subsurface soil sample. , 2007, International journal of systematic and evolutionary microbiology.

[14]  Duu-Jong Lee,et al.  Degradation of phenol by aerobic granules and isolated yeast Candida tropicalis , 2007, Biotechnology and bioengineering.

[15]  Matthew C. Posewitz,et al.  Functional Studies of [FeFe] Hydrogenase Maturation in an Escherichia coli Biosynthetic System , 2006, Journal of bacteriology.

[16]  F. Kargı,et al.  Bio-hydrogen production from waste materials , 2006 .

[17]  Edward Crabbe,et al.  Influence of Culture Parameters on Biological Hydrogen Production by Clostridium saccharoperbutylacetonicum ATCC 27021 , 2005 .

[18]  R. Sawers,et al.  Formate and its role in hydrogen production in Escherichia coli. , 2005, Biochemical Society transactions.

[19]  You-Kwan Oh,et al.  Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19 , 2003 .

[20]  Alfons J. M. Stams,et al.  Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii , 2002 .

[21]  Serge R. Guiot,et al.  Enhanced selection of an anaerobic pentachlorophenol-degrading consortium. , 2001, Biotechnology and bioengineering.

[22]  Debabrata Das,et al.  Redirection of biochemical pathways for the enhancement of H2 production by Enterobacter cloacae , 2001, Biotechnology Letters.

[23]  R. Bally,et al.  Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum , 2000 .

[24]  B J Lemon,et al.  X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. , 1998, Science.

[25]  K. Bernard,et al.  Isolation and characterization of a new bacterium carboxylating phenol to benzoic acid under anaerobic conditions , 1996, Journal of bacteriology.

[26]  Shigeharu Tanisho,et al.  Continuous hydrogen production from molasses by fermentation using urethane foam as a support of flocks , 1995 .

[27]  S. Tanisho,et al.  Continuous hydrogen production from molasses by the bacterium Enterobacter aerogenes , 1994 .

[28]  T. Gorontzy,et al.  Microbial transformation of nitroaromatic compounds under anaerobic conditions. , 1993, Journal of general microbiology.

[29]  J. Wiegel,et al.  Isolation and partial characterization of aClostridium species transforming para-hydroxybenzoate and 3,4-dihydroxybenzoate and producing phenols as the final transformation products , 1990, Microbial Ecology.

[30]  L. Huang,et al.  Cellulose digestion and cellulase regulation and distribution in Fibrobacter succinogenes subsp. succinogenes S85 , 1990, Applied and environmental microbiology.

[31]  J. Wiegel,et al.  Conversion of 13C‐1 phenol to 13C‐4 benzoate, an intermediate step in the anaerobic degradation of chlorophenols , 1990 .

[32]  Y. Kow,et al.  Purification and properties of membrane-bound hydrogenase from Azotobacter vinelandii , 1984, Journal of bacteriology.

[33]  W. Orme-Johnson,et al.  Role of magnesium adenosine 5'-triphosphate in the hydrogen evolution reaction catalyzed by nitrogenase from Azotobacter vinelandii. , 1980, Biochemistry.

[34]  H. Gest,et al.  Biological Formation of Molecular Hydrogen , 1965, Science.

[35]  K. Sakka,et al.  Conversion of chitinous wastes to hydrogen gas by Clostridium paraputrificum M-21. , 2001, Journal of bioscience and bioengineering.

[36]  N. Kamiya,et al.  Hydrogen evolution of Enterobacter aerogenes depending on culture pH: mechanism of hydrogen evolution from NADH by means of membrane-bound hydrogenase. , 1989, Biochimica et biophysica acta.

[37]  A. E. Greenberg,et al.  Standard methods for the examination of water and wastewater : supplement to the sixteenth edition , 1988 .

[38]  Shigeharu Tanisho,et al.  Fermentative hydrogen evolution by Enterobacter aerogenes strain E.82005 , 1987 .