Zirconium diboride thin films for use in high temperature sensors and MEMS devices

Sensors and MEMS devices operating in high temperature environments require stable thin films with high electrical conductivity for use as electrodes, bond pads, and other components. Metal films are unreliable because of thermodynamically driven morphological instability and agglomeration over long times. Zirconium diboride (ZrB2) is an ultra-high temperature conducting ceramic with a melting point of 3245°C, with low atomic diffusion rates compared to other materials. To evaluate ZrB2 as a high temperature film, 200 nm thick ZrB2 films were synthesized on r-sapphire substrates using e-beam co-evaporation of elemental Zr and B sources. Film stability was characterized after post-deposition thermal treatments from 600-1000°C in both reducing (vacuum) and oxidizing (air) environments. ZrB2 films deposited at room temperature are amorphous, but have short-range order characteristic of ZrB2 bonding. ZrB2 films grown at 600°C are polycrystalline with preferred <0001< texture, whereas at 850°C grains with preferred <10-10< and <10-11< texture become dominant. Negligible grain growth or morphology changes occur after annealing at 850°C for 55 hours in vacuum, and film electrical conductivity remains <105 S/m. Annealing in air, however, leads to ZrB2 film decomposition into ZrO2 and B2O3 phases, the latter of which is volatile. X-ray diffraction indicates that a 50 nm thick hexagonal boron nitride (h-BN) capping layer grown on top of ZrB2 via magnetron sputtering hinders oxidation, but the ZrB2 eventually transforms to ZrO2. These results indicate that ZrB2 films are attractive for potential use in sensors and MEMS devices in high temperature reducing environments, and for short times in oxidizing environments when covered with a h-BN capping layer.

[1]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[2]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[3]  R. Speyer,et al.  Oxidation Resistance of Fully Dense ZrB2 with SiC, TaB2, and TaSi2 Additives , 2008 .

[4]  Peng Xianghe,et al.  A Thermo‐Chemo‐Mechanical Model for the Oxidation of Zirconium Diboride , 2015 .

[5]  M. W. Chase,et al.  NIST-JANAF Thermochemical Tables, 4th Edition , 1998 .

[6]  D. Allred,et al.  Chemically vapor-deposited ZrB2 as a selective solar absorber☆ , 1981 .

[7]  D. Parfitt,et al.  Atomic Scale Modeling of Point Defects in Zirconium Diboride , 2011 .

[8]  M. Pereira da Cunha,et al.  Pt-Ni / Pt-Zr electrodes for stable SAW resonator operation during repeated temperature cycling up to 1000°C , 2015, 2015 IEEE International Ultrasonics Symposium (IUS).

[9]  D. Sciti,et al.  Oxidation behavior of ZrB2 composites doped with various transition metal silicides , 2014 .

[10]  J. Vlassak,et al.  High tensile strength of sputter-deposited ZrB2 ceramic thin films measured up to 1016 K , 2016 .

[11]  Christian Mitterer,et al.  Borides in Thin Film Technology , 1997 .

[12]  S. Tougaard Universality Classes of Inelastic Electron Scattering Cross‐sections , 1997 .

[13]  J. Bezemer,et al.  The melting temperature of platinum measured from continually melting and freezing ribbons , 1976 .

[14]  D. Frankel,et al.  Influence of composition and multilayer architecture on electrical conductivity of high temperature Pt-alloy films , 2015 .

[15]  R. A. Serway Principles of Physics , 1994 .

[16]  J. Shappirio,et al.  Synthesis and properties of some refractory transition metal diboride thin films , 1983 .

[17]  R. Whig,et al.  Thermodynamics of tetragonal zirconia formation in a nanolaminate film , 1996 .

[18]  T. Mori,et al.  Two-phase zirconium boride thin film obtained by ultra-short pulsed laser ablation of a ZrB12 target , 2013 .

[19]  L. Stanciu,et al.  ZrB2‐SiC and ZrB2‐ZrC Ceramics with High Secondary Phase Content , 2015 .

[20]  J. Szade,et al.  Characteristics of sputter-deposited TiN, ZrB2 and W2B diffusion barriers for advanced metallizations to GaAs , 1999 .

[21]  D. Pejaković,et al.  Thermal and Electrical Transport Properties of Spark Plasma‐Sintered HfB2 and ZrB2 Ceramics , 2011 .

[22]  D. M. Stewart,et al.  Electrically stable nanocomposite thin films formed by oxidation of Pt-ZrB2 nanolaminate templates , 2015 .

[23]  C. Kittel Introduction to solid state physics , 1954 .

[24]  Ponniah Vajeeston,et al.  Electronic structure, bonding, and ground-state properties of AlB 2 -type transition-metal diborides , 2001 .

[25]  Donald T. Ellerby,et al.  High‐Strength Zirconium Diboride‐Based Ceramics , 2004 .

[26]  M. Pereira da Cunha,et al.  High temperature stability of electrically conductive Pt–Rh/ZrO2 and Pt–Rh/HfO2 nanocomposite thin film electrodes , 2014 .

[27]  P. Ignatenko,et al.  Kinetics of the formation and growth of critical nuclei in nanostructured films of borides, nitrides, and silicides , 2012 .

[28]  L. Hultman,et al.  ZrB2 thin films grown by high power impulse magnetron sputtering from a compound target , 2012 .

[29]  I. Ban’kovskaya,et al.  Oxidation processes in a silicon-boron-zirconium boride composite in the temperature range 1000–1300°C , 2012, Glass Physics and Chemistry.

[30]  P. Liley,et al.  Thermal Conductivity of the Elements , 1972 .

[31]  J. Vlassak,et al.  Low-Temperature Synthesis of Ultra-High-Temperature Coatings of ZrB 2 Using Reactive Multilayers , 2014 .

[32]  Carl V. Thompson,et al.  Solid-State Dewetting of Thin Films , 2012 .

[33]  W. Williams,et al.  Transition metal carbides, nitrides, and borides for electronic applications , 1997 .

[34]  O. Kraft,et al.  Mechanical behavior of Pt and Pt–Ru solid solution alloy thin films , 2004 .

[35]  K. Schwarz Band structure and chemical bonding in transition metal carbides and nitrides , 1987 .

[36]  W. Williams,et al.  Electrical properties of hard materials , 1999 .

[37]  T. Moonlight,et al.  P4L-1 Enabling Very High Temperature Acoustic Wave Devices for Sensor & Frequency Control Applications , 2007, 2007 IEEE Ultrasonics Symposium Proceedings.

[38]  D. C. Fox,et al.  TiB2 and ZrB2 diffusion barriers in GaAs Ohmic contact technology , 1985 .

[39]  D. Frankel,et al.  Growth, structure, and high temperature stability of zirconium diboride thin films , 2015 .

[40]  E. Janzén,et al.  Direct current magnetron sputtered ZrB2 thin films on 4H-SiC(0001) and Si(100) , 2014 .