Effect of Cold Rolling on the Phase Transformation Kinetics of an Al0.5CoCrFeNi High-Entropy Alloy

The solid state phase transformation kinetics of as-cast and cold rolling deformed Al0.5CoCrFeNi high-entropy alloys have been investigated by the thermal expansion method. The phase transformed volume fractions are determined from the thermal expansion curve using the lever rule method, and the deformed sample exhibits a much higher transformation rate. Two kinetic parameters, activation energy (E) and kinetic exponent (n) are determined using Kissinger– Akahira–Sunose (KAS) and Johnson–Mehl–Avrami (JMA) method, respectively. Results show that a pre-deformed sample shows a much lower activation energy and higher kinetic exponent compared with the as-cast sample, which are interpreted based on the deformation induced defects that can promote the nucleation and growth process during phase transformation.

[1]  Zhongbo Zhou,et al.  Non-isothermal phase transformation kinetics of ω phase in TB-13 titanium alloys , 2010 .

[2]  R. Hu,et al.  Kinetic analysis of the isochronal crystallization of Ti40Zr25Ni8Cu9Be18 metallic glass , 2009 .

[3]  Lixian Sun,et al.  The BCC/B2 Morphologies in AlxNiCoFeCr High-Entropy Alloys , 2017 .

[4]  John J. Lewandowski,et al.  High-entropy Al 0.3 CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures , 2017 .

[5]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[6]  J. Christian,et al.  The theory of transformations in metals and alloys , 2003 .

[7]  张勇 The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures , 2016 .

[8]  Jun Wang,et al.  Strengthening of nanoprecipitations in an annealed Al0.5CoCrFeNi high entropy alloy , 2016 .

[9]  W. Wang,et al.  Microstructure and properties of bulk Al0.5CoCrFeNi high-entropy alloy by cold rolling and subsequent annealing , 2018, Materials Science and Engineering: A.

[10]  J. Toboła,et al.  Relative crystal stability of AlxFeNiCrCo high entropy alloys from XRD analysis and formation energy calculation , 2015 .

[11]  Chao Li,et al.  Effect of Solidification on Microstructure and Properties of FeCoNi(AlSi)0.2 High-Entropy Alloy Under Strong Static Magnetic Field , 2018, Entropy.

[12]  Jun Wang,et al.  Hot Deformation Behavior of As-Cast and Homogenized Al 0 . 5 CoCrFeNi High Entropy Alloys , 2016 .

[13]  Jien-Wei Yeh,et al.  Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤2) high-entropy alloys , 2009 .

[14]  V. Bertolino,et al.  Effect of the Biopolymer Charge and the Nanoclay Morphology on Nanocomposite Materials , 2016 .

[15]  Swe-Kai Chen,et al.  Electrochemical passive properties of AlxCoCrFeNi (x = 0, 0.25, 0.50, 1.00) alloys in sulfuric acids , 2010 .

[16]  Jun Wang,et al.  The FCC to BCC phase transformation kinetics in an Al 0.5 CoCrFeNi high entropy alloy , 2017 .

[17]  Jonathan D. Poplawsky,et al.  Secondary phases in AlxCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal , 2017 .

[18]  K. Varma,et al.  Crystallization kinetic studies of CaBi2B2O7 glasses by non-isothermal methods , 2009, Journal of Materials Science.

[19]  W. Wang,et al.  Temperature dependent deformation mechanisms of Al0.3CoCrFeNi high-entropy alloy, starting from serrated flow behavior , 2018, Journal of Alloys and Compounds.

[20]  N. Stepanov,et al.  Microstructure and Mechanical Properties Evolution of the Al, C-Containing CoCrFeNiMn-Type High-Entropy Alloy during Cold Rolling , 2017, Materials.

[21]  Jun Wang,et al.  An integral fitting method for analyzing the isochronal transformation kinetics: Application to the crystallization of a Ti-based amorphous alloy , 2009 .

[22]  Peter K. Liaw,et al.  Science and technology in high-entropy alloys , 2018, Science China Materials.

[23]  Yong Zhang,et al.  Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation , 2016, Scientific Reports.

[24]  J. Yeh,et al.  Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys , 2011 .

[25]  W. Lu,et al.  Phase transformation kinetics and microstructural evolution of MnAl permanent magnet alloys , 2016 .

[26]  Yong Zhang,et al.  Irradiation Resistance in AlxCoCrFeNi High Entropy Alloys , 2015 .

[27]  H. E. Kissinger Reaction Kinetics in Differential Thermal Analysis , 1957 .

[28]  Jun Wang,et al.  Hot Deformation Behavior of As-Cast and Homogenized Al0.5CoCrFeNi High Entropy Alloys , 2016 .

[29]  C. Bos,et al.  Analysis of solid state phase transformation kinetics: models and recipes , 2007 .

[30]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[31]  D. Miracle,et al.  A critical review of high entropy alloys and related concepts , 2016 .

[32]  A. Stern,et al.  AlxCrFeCoNi High-Entropy Alloys: Surface Modification by Electron Beam Bead-on-Plate Melting , 2016, Metallography, Microstructure, and Analysis.

[33]  Ming-Hung Tsai,et al.  Physical Properties of High Entropy Alloys , 2013, Entropy.

[34]  D. Choudhuri,et al.  Modifying transformation pathways in high entropy alloys or complex concentrated alloys via thermo-mechanical processing , 2018, Acta Materialia.

[35]  Zikang Tang,et al.  Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys , 2016 .