A Comprehensive Survey on Knowledge Graph Entity Alignment via Representation Learning

In the last few years, the interest in knowledge bases has grown exponentially in both the research community and the industry due to their essential role in AI applications. Entity alignment is an important task for enriching knowledge bases. This paper provides a comprehensive tutorial-type survey on representative entity alignment techniques that use the new approach of representation learning. We present a framework for capturing the key characteristics of these techniques, propose two datasets to address the limitation of existing benchmark datasets, and conduct extensive experiments using the proposed datasets. The framework gives a clear picture of how the techniques work. The experiments yield important results about the empirical performance of the techniques and how various factors affect the performance. One important observation not stressed by previous work is that techniques making good use of attribute triples and relation predicates as features stand out as winners.

[1]  Wenting Wang,et al.  MRAEA: An Efficient and Robust Entity Alignment Approach for Cross-lingual Knowledge Graph , 2020, WSDM.

[2]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[3]  Xiangliang Zhang,et al.  Improving Cross-lingual Entity Alignment via Optimal Transport , 2019, IJCAI.

[4]  Yann LeCun,et al.  Dimensionality Reduction by Learning an Invariant Mapping , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[5]  Yanghua Xiao,et al.  Modeling Multi-mapping Relations for Precise Cross-lingual Entity Alignment , 2019, EMNLP.

[6]  Alvin E. Roth Deferred acceptance algorithms: history, theory, practice, and open questions , 2008, Int. J. Game Theory.

[7]  Jun Zhao,et al.  Knowledge Graph Embedding via Dynamic Mapping Matrix , 2015, ACL.

[8]  Markus Krötzsch,et al.  Wikidata , 2014, Commun. ACM.

[9]  Ahmed K. Elmagarmid,et al.  Automating the approximate record-matching process , 2000, Inf. Sci..

[10]  Chengkai Li,et al.  A benchmarking study of embedding-based entity alignment for knowledge graphs , 2020, Proc. VLDB Endow..

[11]  Xiaofei Zhou,et al.  Neighborhood-Aware Attentional Representation for Multilingual Knowledge Graphs , 2019, IJCAI.

[12]  Lu Yu,et al.  Semi-Supervised Entity Alignment via Knowledge Graph Embedding with Awareness of Degree Difference , 2019, WWW.

[13]  Yasha Wang,et al.  COTSAE: CO-Training of Structure and Attribute Embeddings for Entity Alignment , 2020, AAAI.

[14]  Liang Lin,et al.  End-to-End Knowledge-Routed Relational Dialogue System for Automatic Diagnosis , 2019, AAAI.

[15]  Jiuyang Tang,et al.  Collective Entity Alignment via Adaptive Features , 2020, 2020 IEEE 36th International Conference on Data Engineering (ICDE).

[16]  Mark Heimann,et al.  G-CREWE: Graph CompREssion With Embedding for Network Alignment , 2020, CIKM.

[17]  Rui Zhang,et al.  Entity Alignment between Knowledge Graphs Using Attribute Embeddings , 2019, AAAI.

[18]  Jiuyang Tang,et al.  An Experimental Study of State-of-the-Art Entity Alignment Approaches , 2020, IEEE Transactions on Knowledge and Data Engineering.

[19]  Qi Wu,et al.  Image Captioning and Visual Question Answering Based on Attributes and External Knowledge , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Wei Hu,et al.  Knowledge Graph Alignment Network with Gated Multi-hop Neighborhood Aggregation , 2019, AAAI.

[21]  Yann LeCun,et al.  Signature Verification Using A "Siamese" Time Delay Neural Network , 1993, Int. J. Pattern Recognit. Artif. Intell..

[22]  Nicholas Jing Yuan,et al.  Collaborative Knowledge Base Embedding for Recommender Systems , 2016, KDD.

[23]  Maria Pershina,et al.  Holistic entity matching across knowledge graphs , 2015, 2015 IEEE International Conference on Big Data (Big Data).

[24]  Philip S. Yu,et al.  A Survey on Knowledge Graphs: Representation, Acquisition, and Applications , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[25]  Fabian M. Suchanek,et al.  Fast rule mining in ontological knowledge bases with AMIE+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{docu , 2015, The VLDB Journal.

[26]  Zhiyuan Liu,et al.  Iterative Entity Alignment via Joint Knowledge Embeddings , 2017, IJCAI.

[27]  Qiang Ma,et al.  Dual Graph Convolutional Networks for Graph-Based Semi-Supervised Classification , 2018, WWW.

[28]  P. Ivax,et al.  A THEORY FOR RECORD LINKAGE , 2004 .

[29]  Wei Hu,et al.  Cross-Lingual Entity Alignment via Joint Attribute-Preserving Embedding , 2017, SEMWEB.

[30]  Carlo Zaniolo,et al.  Multilingual Knowledge Graph Embeddings for Cross-lingual Knowledge Alignment , 2016, IJCAI.

[31]  Yansong Feng,et al.  Cross-lingual Knowledge Graph Alignment via Graph Matching Neural Network , 2019, ACL.

[32]  Neelam Duhan,et al.  Journey of Web Search Engines: Milestones, Challenges & Innovations , 2016 .

[33]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[34]  Han Xiao,et al.  TransG : A Generative Model for Knowledge Graph Embedding , 2015, ACL.

[35]  Yansong Feng,et al.  Neighborhood Matching Network for Entity Alignment , 2020, ACL.

[36]  Wei Zhang,et al.  Knowledge vault: a web-scale approach to probabilistic knowledge fusion , 2014, KDD.

[37]  Qi Wang,et al.  ACM: Adaptive Cross-Modal Graph Convolutional Neural Networks for RGB-D Scene Recognition , 2019, AAAI.

[38]  Mark B. Sandler,et al.  Automatic Interlinking of Music Datasets on the Semantic Web , 2008, LDOW.

[39]  Praveen Paritosh,et al.  Freebase: a collaboratively created graph database for structuring human knowledge , 2008, SIGMOD Conference.

[40]  Ganesh Ramakrishnan,et al.  Collective annotation of Wikipedia entities in web text , 2009, KDD.

[41]  Xianpei Han,et al.  Global Structure and Local Semantics-Preserved Embeddings for Entity Alignment , 2020, IJCAI.

[42]  Lise Getoor,et al.  Entity Resolution in Graphs , 2005 .

[43]  Jiaoyan Chen,et al.  An Industry Evaluation of Embedding-based Entity Alignment , 2020, COLING.

[44]  Yuzhong Qu,et al.  Multi-view Knowledge Graph Embedding for Entity Alignment , 2019, IJCAI.

[45]  Eduard H. Hovy,et al.  An Interpretable Knowledge Transfer Model for Knowledge Base Completion , 2017, ACL.

[46]  Chengjiang Li,et al.  Semi-supervised Entity Alignment via Joint Knowledge Embedding Model and Cross-graph Model , 2019, EMNLP.

[47]  Serge Abiteboul,et al.  PARIS: Probabilistic Alignment of Relations, Instances, and Schema , 2011, Proc. VLDB Endow..

[48]  Wei Hu,et al.  Learning to Exploit Long-term Relational Dependencies in Knowledge Graphs , 2019, ICML.

[49]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[50]  Yansong Feng,et al.  Coordinated Reasoning for Cross-Lingual Knowledge Graph Alignment , 2020, AAAI.

[51]  Zhiyuan Liu,et al.  Learning Entity and Relation Embeddings for Knowledge Graph Completion , 2015, AAAI.

[52]  Philip S. Yu,et al.  A Comprehensive Survey on Graph Neural Networks , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[53]  Bin Wang,et al.  Guiding Cross-lingual Entity Alignment via Adversarial Knowledge Embedding , 2019, 2019 IEEE International Conference on Data Mining (ICDM).

[54]  Zhichun Wang,et al.  Knowledge Graph Alignment with Entity-Pair Embedding , 2020, EMNLP.

[55]  Huanbo Luan,et al.  Modeling Relation Paths for Representation Learning of Knowledge Bases , 2015, EMNLP.

[56]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[57]  Timothy Baldwin,et al.  Semi-supervised User Geolocation via Graph Convolutional Networks , 2018, ACL.

[58]  Zhichun Wang,et al.  Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks , 2018, EMNLP.

[59]  Zhendong Mao,et al.  Knowledge Graph Embedding: A Survey of Approaches and Applications , 2017, IEEE Transactions on Knowledge and Data Engineering.

[60]  Bo Chen,et al.  JarKA: Modeling Attribute Interactions for Cross-lingual Knowledge Alignment , 2020, PAKDD.

[61]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[62]  A KnoblockCraig,et al.  Learning object identification rules for information integration , 2001 .

[63]  Steven Skiena,et al.  Co-training Embeddings of Knowledge Graphs and Entity Descriptions for Cross-lingual Entity Alignment , 2018, IJCAI.

[64]  Wei Hu,et al.  Bootstrapping Entity Alignment with Knowledge Graph Embedding , 2018, IJCAI.

[65]  Haofen Wang,et al.  An effective rule miner for instance matching in a web of data , 2012, CIKM.

[66]  Han Xiao,et al.  From One Point to a Manifold: Knowledge Graph Embedding for Precise Link Prediction , 2015, IJCAI.

[67]  Wei Hu,et al.  TransEdge: Translating Relation-Contextualized Embeddings for Knowledge Graphs , 2019, SEMWEB.

[68]  Yuting Wu,et al.  Relation-Aware Entity Alignment for Heterogeneous Knowledge Graphs , 2019, IJCAI.

[69]  Pietro Liò,et al.  Graph Attention Networks , 2017, ICLR.

[70]  Michael Färber,et al.  The Microsoft Academic Knowledge Graph: A Linked Data Source with 8 Billion Triples of Scholarly Data , 2019, SEMWEB.

[71]  Sören Auer,et al.  LIMES - A Time-Efficient Approach for Large-Scale Link Discovery on the Web of Data , 2011, IJCAI.

[72]  Gerhard Weikum,et al.  YAGO2: A Spatially and Temporally Enhanced Knowledge Base from Wikipedia: Extended Abstract , 2013, IJCAI.

[73]  Christos Faloutsos,et al.  Collective Multi-type Entity Alignment Between Knowledge Graphs , 2020, WWW.

[74]  Samuel S. Schoenholz,et al.  Neural Message Passing for Quantum Chemistry , 2017, ICML.

[75]  Zhen Wang,et al.  Knowledge Graph Embedding by Translating on Hyperplanes , 2014, AAAI.

[76]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[77]  Li Guo,et al.  Learning Knowledge Embeddings by Combining Limit-based Scoring Loss , 2017, CIKM.

[78]  Dongyan Zhao,et al.  Jointly Learning Entity and Relation Representations for Entity Alignment , 2019, EMNLP.

[79]  Zhiyuan Liu,et al.  Exploring and Evaluating Attributes, Values, and Structure for Entity Alignment , 2020, EMNLP.

[80]  Chengjiang Li,et al.  Multi-Channel Graph Neural Network for Entity Alignment , 2019, ACL.

[81]  Jens Lehmann,et al.  DBpedia: A Nucleus for a Web of Open Data , 2007, ISWC/ASWC.

[82]  Myle Ott,et al.  fairseq: A Fast, Extensible Toolkit for Sequence Modeling , 2019, NAACL.

[83]  Jimmy J. Lin,et al.  Aligning Cross-Lingual Entities with Multi-Aspect Information , 2019, EMNLP.

[84]  Lan Du,et al.  Using Entity Information from a Knowledge Base to Improve Relation Extraction , 2015, ALTA.

[85]  Craig A. Knoblock,et al.  Learning object identification rules for information integration , 2001, Inf. Syst..

[86]  Martin Gaedke,et al.  Discovering and Maintaining Links on the Web of Data , 2009, SEMWEB.

[87]  Jason Weston,et al.  Translating Embeddings for Modeling Multi-relational Data , 2013, NIPS.

[88]  Rui Ye,et al.  A Vectorized Relational Graph Convolutional Network for Multi-Relational Network Alignment , 2019, IJCAI.