New result on PID controller design of LTI systems via dominant eigenvalue assignment

This note considers the problem of assigning the dominant eigenvalues of a linear time-invariant (LTI) system to the desired positions by using proportional-integral-derivative (PID) controllers. The procedure is based on first setting some rightmost eigenvalues of the system at the desired positions and then guaranteeing the dominance of those rightmost eigenvalues by using the generalization of the Hermite-Biehler Theorem. It is worth pointing out that this work aims to ascertain the gains of PID controllers in a straightforwardly computational way which plays an important role in practical applications.

[1]  Karl Johan Åström,et al.  Guaranteed dominant pole placement with PID controllers , 2009 .

[2]  Ming-Tzu Ho,et al.  PID controller design for robust performance , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[3]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[4]  Pavel Zítek,et al.  Ultimate-frequency based dominant pole placement , 2010 .

[5]  Stefan F. Graebe,et al.  Analytical PID parameter expressions for higher order systems , 1999, Autom..

[6]  Benjamin C. Kuo,et al.  AUTOMATIC CONTROL SYSTEMS , 1962, Universum:Technical sciences.

[7]  Shankar P. Bhattacharyya,et al.  Generalizations of the Hermite–Biehler theorem , 1999 .

[8]  Tomás Vyhlídal,et al.  Ultimate-Frequency Based Three-Pole Dominant Placement in Delayed PID Control Loop , 2012, TDS.

[9]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[10]  Karl Johan Åström,et al.  DOMINANT POLE DESIGN - A UNIFIED VIEW OF PID CONTROLLER TUNING , 1993 .

[11]  Shyh Hong Hwang,et al.  CLOSED-LOOP TUNING METHOD BASED ON DOMINANT POLE PLACEMENT , 1995 .

[12]  Marcelo C. M. Teixeira,et al.  Synthesis of PID controllers for a class of time delay systems , 2009, Autom..

[13]  Shankar P. Bhattacharyya,et al.  Controller Synthesis Free of Analytical Models: Three Term Controllers , 2008, IEEE Transactions on Automatic Control.

[14]  Ming-Tzu Ho,et al.  Real and complex stabilization: stability and performance , 2004, Proceedings of the 2004 American Control Conference.

[15]  Tore Hägglund,et al.  Advanced PID Control , 2005 .

[16]  Pavel Zítek,et al.  Dimensional analysis approach to dominant three-pole placement in delayed PID control loops , 2013 .

[17]  Shankar P. Bhattacharyya,et al.  Computation of all stabilizing PID gains for digital control systems , 2001, IEEE Trans. Autom. Control..