暂无分享,去创建一个
[1] Jason P. Bell,et al. The upper density of an automatic set is rational , 2020, ArXiv.
[2] Christian Mauduit,et al. Prime numbers along Rudin–Shapiro sequences , 2015 .
[3] Christian Mauduit,et al. La somme des chiffres des carrés , 2009 .
[4] T. Tao. Equivalence of the Logarithmically Averaged Chowla and Sarnak Conjectures , 2016, 1605.04628.
[5] Glyn Harman,et al. ANALYTIC NUMBER THEORY (American Mathematical Society Colloquium Publications 53) , 2005 .
[6] S. Ferenczi,et al. Sarnak’s Conjecture: What’s New , 2017, 1710.04039.
[7] A. O. Gelfond,et al. Sur les nombres qui ont des propriétés additives et multiplicatives données , 1968 .
[8] Johannes F. Morgenbesser,et al. Generalized Thue-Morse sequences of squares , 2012 .
[9] M. Queffélec. Substitution dynamical systems, spectral analysis , 1987 .
[10] C. Mauduit,et al. Normality along squares , 2018, Journal of the European Mathematical Society.
[11] Jean-Pierre Serre,et al. Linear representations of finite groups , 1977, Graduate texts in mathematics.
[12] J. Geluk. Π-regular variation , 1981 .
[13] H. Iwaniec,et al. Analytic Number Theory , 2004 .
[14] Alan Cobham,et al. Uniform tag sequences , 1972, Mathematical systems theory.
[15] Michael Drmota,et al. The sum‐of‐digits function of polynomial sequences , 2011, J. Lond. Math. Soc..
[16] B. Host,et al. The logarithmic Sarnak conjecture for ergodic weights , 2017, 1708.00677.
[17] Jakub Byszewski,et al. Substitutive systems and a finitary version of Cobham's theorem , 2021, Comb..
[18] P. Sarnak. Three Lectures on the Mobius Function Randomness and Dynamics , 2010 .
[19] T. Tao,et al. Odd order cases of the logarithmically averaged Chowla conjecture , 2017, 1710.02112.
[21] Gowers norms for automatic sequences , 2020, ArXiv.
[22] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[23] Maksym Radziwill,et al. Rigidity in dynamics and Möbius disjointness , 2019, Fundamenta Mathematicae.
[24] Michael Drmota,et al. Subsequences of automatic sequences indexed by ⌊nc⌋ and correlations , 2012 .
[25] C. Mauduit,et al. Rudin–Shapiro sequences along squares , 2017 .
[26] M. Lema'nczyk,et al. Automatic sequences are orthogonal to aperiodic multiplicative functions , 2018, 2019-20 MATRIX Annals.
[27] Clemens Müllner,et al. The Rudin–Shapiro Sequence and Similar Sequences Are Normal Along Squares , 2017, Canadian Journal of Mathematics.
[28] Clemens Müllner. N T ] 5 J ul 2 01 7 AUTOMATIC SEQUENCES FULFILL THE SARNAK , 2017 .
[29] T. Tao. THE LOGARITHMICALLY AVERAGED CHOWLA AND ELLIOTT CONJECTURES FOR TWO-POINT CORRELATIONS , 2015, Forum of Mathematics, Pi.
[30] Christian Mauduit,et al. Sur un problème de Gelfond: la somme des chiffres des nombres premiers , 2010 .
[32] Sarnak’s Conjecture Implies the Chowla Conjecture Along a Subsequence , 2017, 1710.07049.