Item Parameter Estimation and Item Fit Analysis

Computer-based testing (CBT), as computerized adaptive testing (CAT), is based on the availability of a large pool of calibrated test items. Usually, the calibration process consists of two stages.

[1]  Robert J. Mislevy,et al.  Bayes modal estimation in item response models , 1986 .

[2]  J. Aitchison,et al.  Maximum-Likelihood Estimation of Parameters Subject to Restraints , 1958 .

[3]  Steven E. Rigdon,et al.  Parameter estimation in latent trait models , 1983 .

[4]  T. Louis Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .

[5]  Pao-Kuei Wu,et al.  MISSING RESPONSES AND IRT ABILITY ESTIMATION: OMITS, CHOICE, TIME LIMITS, AND ADAPTIVE TESTING , 1996 .

[6]  Cornelis A.W. Glas,et al.  A Comparison of Item-Fit Statistics for the Three-Parameter Logistic Model , 2003 .

[7]  Anthony R. Zara,et al.  Procedures for Selecting Items for Computerized Adaptive Tests. , 1989 .

[8]  Terry A. Ackerman Developments in Multidimensional Item Response Theory , 1996 .

[9]  R. Darrell Bock,et al.  Multiple Group IRT , 1997 .

[10]  Cees A. W. Glas,et al.  DETECTION OF DIFFERENTIAL ITEM FUNCTIONING USING LAGRANGE MULTIPLIER TESTS , 1996 .

[11]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm , 1981 .

[12]  Cornelis A.W. Glas,et al.  Modification indices for the 2-PL and the nominal response model , 1999 .

[13]  Robert J. Mislevy,et al.  Does adaptive testing violate local independence? , 2000 .

[14]  Mark D. Reckase,et al.  The Difficulty of Test Items That Measure More Than One Ability , 1985 .

[15]  D. Rubin INFERENCE AND MISSING DATA , 1975 .

[16]  Karen Draney,et al.  Objective measurement : theory into practice , 1992 .

[17]  R. Mislevy Estimating latent distributions , 1984 .

[18]  Benjamin D. Wright,et al.  A Procedure for Sample-Free Item Analysis , 1969 .

[19]  J. Neyman,et al.  Consistent Estimates Based on Partially Consistent Observations , 1948 .

[20]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[21]  Mark D. Reckase,et al.  A Linear Logistic Multidimensional Model for Dichotomous Item Response Data , 1997 .

[22]  Terry Ackerman,et al.  Graphical Representation of Multidimensional Item Response Theory Analyses , 1996 .

[23]  G. HÄRtler WETHERILL, G. B.: Sampling Inspection and Quality Control. Chapman & Hall Ltd., London, 2. Auflage 1977. 146 S., 39 Abb., 8 Tab., 1 Nomogramm, $ 2.95. , 1978 .

[24]  Calyampudi R. Rao Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation , 1948, Mathematical Proceedings of the Cambridge Philosophical Society.

[25]  J. Kiefer,et al.  CONSISTENCY OF THE MAXIMUM LIKELIHOOD ESTIMATOR IN THE PRESENCE OF INFINITELY MANY INCIDENTAL PARAMETERS , 1956 .

[26]  Martha L. Stocking,et al.  A Method for Severely Constrained Item Selection in Adaptive Testing , 1992 .

[27]  E. Muraki,et al.  Full-Information Item Factor Analysis , 1988 .

[28]  R. Hambleton,et al.  Handbook of Modern Item Response Theory , 1997 .

[29]  David Thissen,et al.  Marginal maximum likelihood estimation for the one-parameter logistic model , 1982 .