IlliniMet: Illinois System for Metaphor Detection with Contextual and Linguistic Information

Metaphors are rhetorical use of words based on the conceptual mapping as opposed to their literal use. Metaphor detection, an important task in language understanding, aims to identify metaphors in word level from given sentences. We present IlliniMet, a system to automatically detect metaphorical words. Our model combines the strengths of the contextualized representation by the widely used RoBERTa model and the rich linguistic information from external resources such as WordNet. The proposed approach is shown to outperform strong baselines on a benchmark dataset. Our best model achieves F1 scores of 73.0% on VUA ALLPOS, 77.1% on VUA VERB, 70.3% on TOEFL ALLPOS and 71.9% on TOEFL VERB.

[1]  Chuhan Wu,et al.  Neural Metaphor Detecting with CNN-LSTM Model , 2018, Fig-Lang@NAACL-HLT.

[2]  Luke S. Zettlemoyer,et al.  Deep Contextualized Word Representations , 2018, NAACL.

[3]  Yorick Wilks,et al.  Making Preferences More Active , 1978, Artif. Intell..

[4]  George A. Vouros,et al.  Investigating Metaphorical Language in Sentiment Analysis: A Sense-to-Sentiment Perspective , 2012, TSLP.

[5]  Mehdi Ghanimifard,et al.  Bigrams and BiLSTMs Two Neural Networks for Sequential Metaphor Detection , 2018, Fig-Lang@NAACL-HLT.

[6]  Ellen Dodge,et al.  MetaNet: Deep semantic automatic metaphor analysis , 2015 .

[7]  Thomas G. Dietterich Multiple Classifier Systems , 2000, Lecture Notes in Computer Science.

[8]  Beata Beigman Klebanov,et al.  A Corpus of Non-Native Written English Annotated for Metaphor , 2018, NAACL-HLT.

[9]  Eduard Hovy,et al.  Identifying Metaphorical Word Use with Tree Kernels , 2013 .

[10]  Yorick Wilks,et al.  A Preferential, Pattern-Seeking, Semantics for Natural Language Inference , 1975, Artif. Intell..

[11]  Beata Beigman Klebanov,et al.  A Report on the 2018 VUA Metaphor Detection Shared Task , 2018, Fig-Lang@NAACL-HLT.

[12]  Frank Guerin,et al.  End-to-End Sequential Metaphor Identification Inspired by Linguistic Theories , 2019, ACL.

[13]  Stephen Clark,et al.  Modelling metaphor with attribute-based semantics , 2017, EACL.

[14]  Martha Palmer,et al.  Linguistic Analysis Improves Neural Metaphor Detection , 2019, CoNLL.

[15]  Rui Mao,et al.  Word Embedding and WordNet Based Metaphor Identification and Interpretation , 2018, ACL.

[16]  Beata Beigman Klebanov,et al.  Semantic classifications for detection of verb metaphors , 2016, ACL.

[17]  Beata Beigman Klebanov,et al.  A Report on the 2020 VUA and TOEFL Metaphor Detection Shared Task , 2020, FIGLANG.

[18]  Amy Beth Warriner,et al.  Concreteness ratings for 40 thousand generally known English word lemmas , 2014, Behavior research methods.

[19]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[20]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[21]  Eunsol Choi,et al.  Neural Metaphor Detection in Context , 2018, EMNLP.

[22]  Arlene Koglin,et al.  An empirical investigation of cognitive effort required to post-edit machine translated metaphors compared to the translation of metaphors , 2015 .

[23]  Beata Beigman Klebanov,et al.  Supervised Word-Level Metaphor Detection: Experiments with Concreteness and Reweighting of Examples , 2015 .

[24]  Tomek Strzalkowski,et al.  Robust Extraction of Metaphor from Novel Data , 2013 .

[25]  Pramod Viswanath,et al.  Geometry of Compositionality , 2017, AAAI.

[26]  Omer Levy,et al.  RoBERTa: A Robustly Optimized BERT Pretraining Approach , 2019, ArXiv.

[27]  T. Brown Metaphor and Thought , 1981 .

[28]  Gerard J. Steen,et al.  A method for linguistic metaphor identification : from MIP to MIPVU , 2010 .

[29]  Sabine Schulte im Walde,et al.  Improving Verb Metaphor Detection by Propagating Abstractness to Words, Phrases and Individual Senses , 2017 .

[30]  Beata Beigman Klebanov,et al.  Different Texts, Same Metaphors: Unigrams and Beyond , 2014 .