Securing Special Nuclear Material: Recent Advances in Neutron Detection and Their Role in Nonproliferation

Neutron detection is an integral part of the global effort to prevent the proliferation of special nuclear material (SNM). Applications relying on neutron-detection technology range from traditional nuclear nonproliferation objectives, such as safeguarding material and verifying stockpile reductions, to the interdiction of SNM—a goal that has recently risen in priority to a level on par with traditional missions. Large multinational programs targeting interdiction and safeguards have deployed radiation-detection assets across the globe. In parallel with these deployments of commercially available technology, significant research and development has been directed toward the creation of next-generation assets. Neutron-detection technology plays a prominent role because of the capability of neutrons to penetrate materials that readily absorb gamma rays and the unique fission signatures neutrons possess. One particularly acute technology-development challenge results from dwindling supplies of H3e, partially ...

[1]  Young Ham,et al.  Development of a Safeguards Verification Method and Instrument to Detect Pin Diversion from Pressurized Water Reactor (PWR) Spent Fuel Assemblies , 2006 .

[2]  Lindsay C. Todd,et al.  Lynx: An unattended sensor system for detection of gamma-ray and neutron emissions from special nuclear materials , 2009 .

[3]  D. Macarthur A neutron detector based on microchannel plates , 1987 .

[4]  T. E. Sampson,et al.  PC/FRAM: a code for the nondestructive measurement of the isotopic composition of actinides for safeguards applications , 1996 .

[5]  M. Bandstra,et al.  Measurements of Fukushima fallout by the Berkeley Radiological Air and Water Monitoring project , 2011, 2011 IEEE Nuclear Science Symposium Conference Record.

[6]  Sara A. Pozzi,et al.  Feasibility of prompt correlated counting from photon interrogation of concealed nuclear materials , 2007 .

[7]  M. R. Accatino,et al.  The "nuclear car wash": a scanner to detect illicit special nuclear material in cargo containers , 2005, IEEE Sensors Journal.

[8]  R. Klann,et al.  Design considerations for thin film coated semiconductor thermal neutron detectors—I: basics regarding alpha particle emitting neutron reactive films , 2003 .

[9]  B. Esposito,et al.  Digital pulse shape discrimination in organic scintillators for fusion applications , 2004 .

[10]  James F. Ziegler,et al.  Terrestrial cosmic rays , 1996, IBM J. Res. Dev..

[11]  C. T. Nguyen,et al.  Performance testing of the upgraded uranium isotopics multi-group analysis code MGAU , 2007 .

[12]  A. O. Hanson,et al.  A Neutron Detector Having Uniform Sensitivity from 10 Kev to 3 Mev , 1947 .

[13]  A. J. Peurrung,et al.  Detection of fast neutrons in a plastic scintillator using digital pulse processing to reject gammas , 1999 .

[14]  B. Phlips,et al.  Neutron detection using large area silicon detectors , 2007 .

[15]  Y. Kumashiro,et al.  Thermal neutron irradiation experiments on 10BP single-crystal wafers☆ , 1988 .

[16]  John E. Schweppe,et al.  Baseline suppression of vehicle portal monitor gamma count profiles : A characterization study , 2006 .

[17]  Rebecca J. Nikolic,et al.  6:1 aspect ratio silicon pillar based thermal neutron detector filled with 10 B , 2008 .

[18]  Masahito Matsubayashi,et al.  Neutron scintillators with high detection efficiency , 2004 .

[19]  G. Aielli,et al.  Neutron Detectors Based Upon Artificial Single Crystal Diamond , 2009, IEEE Transactions on Nuclear Science.

[20]  James H. Ely,et al.  Status Summary of 3He and Neutron Detection Alternatives for Homeland Security , 2010 .

[21]  Luke E. Erikson,et al.  Lithium Loaded Glass Fiber Neutron Detector Tests , 2009 .

[22]  D. Chichester,et al.  Using electronic neutron generators in active interrogation to detect shielded fissionable material , 2009, 2008 IEEE Nuclear Science Symposium Conference Record.

[23]  A. Agarwal,et al.  The fast neutron response of 4H silicon carbide semiconductor radiation detectors , 2006, IEEE Transactions on Nuclear Science.

[24]  Cyriel Wagemans,et al.  The Nuclear Fission Process , 1991 .

[25]  A. Hitachi,et al.  Absolute Scintillation Yields in Liquid Argon and Xenon for Various Particles , 2002 .

[26]  N.N. Shehad,et al.  Performance of 1 Meter Straw Detector for High Rate Neutron Imaging , 2006, 2006 IEEE Nuclear Science Symposium Conference Record.

[27]  Anthony J. Peurrung,et al.  Recent developments in neutron detection , 2000 .

[28]  M. Bliss,et al.  Predicted performance of neutron spectrometers using scintillating fibers , 2000 .

[29]  G. E. Hansen,et al.  Cosmic ray induced neutron background sources and fluxes for geometries of air over water, ground, iron, and aluminum , 1978 .

[30]  J. Valley,et al.  Improved Neutron Spectrometer Based on Bonner Spheres , 1997 .

[31]  David L. Chichester,et al.  FY09 Advanced Instrumentation and Active Interrogation Research for Safeguards , 2009 .

[32]  Anthony J. Peurrung,et al.  Radiation detector materials: An overview , 2008 .

[33]  A. J. Peurrung,et al.  Neutron detection via bubble chambers. , 2005, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[34]  L. Lucchese,et al.  Digital discrimination of neutrons and gamma-rays in liquid scintillators using wavelets , 2009 .

[35]  James M. Ryan,et al.  SONTRAC: An imaging spectrometer for MeV neutrons , 2003 .

[36]  P. V. Pancella,et al.  MoNA—The Modular Neutron Array , 2003 .

[37]  Apfel,et al.  Prediction and experimental confirmation of the response function for neutron detection using superheated drops. , 1988, Physical review. A, General physics.

[38]  A. Tudora,et al.  Improved Los Alamos model applied to the neutron induced fission of 239Pu and 240Pu and to the spontaneous fission of Pu isotopes , 2001 .

[39]  E. Shores Data updates for the SOURCES-4A computer code , 2001 .

[40]  H.H.K. Tang,et al.  Measurement of the flux and energy spectrum of cosmic-ray induced neutrons on the ground , 2004, IEEE Transactions on Nuclear Science.

[41]  Edward R. Siciliano,et al.  Cosmic-Ray-Induced Ship-Effect Neutron Measurements and Implications for Cargo Scanning at Borders , 2008 .

[42]  J. Glodo,et al.  ${\rm Cs}_{2}{\rm LiYCl}_{6}:{\rm Ce}$ Scintillator for Nuclear Monitoring Applications , 2009, IEEE Transactions on Nuclear Science.

[43]  Z. Bell Tests on a digital neutron-gamma pulse shape discriminator with NE213☆ , 1981 .

[44]  Philip R. Bingham,et al.  Portable fast-neutron radiography with the nuclear materials identification system for fissile material transfers , 2007 .

[45]  A digital method for pulse-shape discrimination between neutrons and γ rays at a high counting rate and a low energy of detected radiation , 2007 .

[46]  P. Gielisse,et al.  Boron compounds for thermal-neutron detection , 1974 .

[47]  A large-area PSPMT based gamma-ray imager with edge reclamation , 2000 .

[48]  George W. Fraser,et al.  Thermal neutron imaging using microchannel plates , 1993, Optics & Photonics.

[49]  W.C. Priedhorsky,et al.  Nuclear detection to prevent or defeat clandestine nuclear attack , 2005, IEEE Sensors Journal.

[50]  Matthew A. Blackston,et al.  Passive and Active Fast-Neutron Imaging in Support of AFCI Safeguards Campaign , 2009 .

[51]  Kenneth A. Kress,et al.  Solid state neutron detector , 1996 .

[52]  V. Radeka,et al.  A GEM based TPC for the LEGS experiment , 2005, IEEE Nuclear Science Symposium Conference Record, 2005.

[53]  James L. Jones,et al.  Photofission-Based, Nuclear Material Detection: Technology Demonstration , 2002 .

[54]  N. Ensslin,et al.  Passive Nondestructive Assay of Nuclear Materials , 1991 .

[55]  P. Dorenbos,et al.  Inorganic thermal-neutron scintillators , 2004 .

[56]  Kevin K Anderson,et al.  A comparison of simple algorithms for gamma-ray spectrometers in radioactive source search applications. , 2008, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[57]  Stephan Friedrich,et al.  Microcalorimeter design for fast-neutron spectroscopy , 2004 .

[58]  Frank H. Ruddy,et al.  Low-background detection of fission neutrons produced by pulsed neutron interrogation , 2009 .

[59]  Richard T. Kouzes Detecting illicit nuclear materials , 2005 .

[60]  Troy Unruh,et al.  Thermal neutron detection with pyrolytic boron nitride , 2008 .

[61]  O. Palamara,et al.  First results from a dark matter search with liquid argon at 87 K in the Gran Sasso underground laboratory , 2008 .

[62]  Andrew S. Hoover,et al.  Superconducting absorbers for use in ultra-high resolution gamma-ray spectrometers based on low temperature microcalorimeter arrays , 2007 .

[63]  G. Knoll Radiation detection and measurement , 1979 .

[64]  Edward R. Siciliano,et al.  Passive neutron detection for interdiction of nuclear material at borders , 2008 .

[65]  Scintillation time dependence and pulse shape discrimination in liquid argon , 2008 .

[66]  T. Gozani,et al.  Fission Signatures for Nuclear Material Detection , 2009, IEEE Transactions on Nuclear Science.

[67]  Stephen E. Korbly,et al.  Nuclear resonance fluorescence and effective Z determination applied to detection and imaging of special nuclear material, explosives, toxic substances and contraband , 2007 .

[68]  James L. Jones,et al.  High-energy photon interrogation for nonproliferation applications , 2007 .

[69]  M. Moszynski,et al.  Boron-10 Loaded BC523A Liquid Scintillator for Neutron Detection in the Border Monitoring , 2007, IEEE Transactions on Nuclear Science.

[70]  G. Hull,et al.  New Organic Crystals for Pulse Shape Discrimination , 2009, IEEE Transactions on Nuclear Science.

[71]  Richard T. Kouzes,et al.  Coated Fiber Neutron Detector Test , 2009 .

[72]  J. B. Czirr,et al.  Evaluation of Lithium Gadolinium Borate Capture-Gated Spectrometer Neutron Efficiencies , 2009, IEEE Transactions on Nuclear Science.

[73]  A. Gavron,et al.  A neutron source imaging detector for nuclear arms treaty verification , 1991 .

[74]  N. Mascarenhas,et al.  Results With the Neutron Scatter Camera , 2008, IEEE Transactions on Nuclear Science.

[75]  Masaki Katagiri,et al.  Evaluation of the performance of a fibre-coded neutron detector with a ZnS/10B2O3 ceramic scintillator , 2009 .

[76]  R C Singleterry,et al.  Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane. , 2002, Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment.

[77]  M. A. Vincenti,et al.  Thermal and fast neutron detection in chemical vapor deposition single-crystal diamond detectors , 2008 .

[78]  M. M. Pickrell,et al.  Application Guide to Neutron Multiplicity Counting , 1998 .

[79]  R. A. Schrack,et al.  A microchannel plate neutron detector , 1984 .

[80]  A. Burger,et al.  Neutron absorption spectroscopy for identification of light elements in actinides , 2006 .

[81]  J. Lund,et al.  Development of a Neutron Scatter Camera for Fission Neutrons , 2006, 2006 IEEE Nuclear Science Symposium Conference Record.

[82]  Jennifer E. Tanner,et al.  Neutron coincidence counting of plutonium and high-energy muon-induced time-correlated events in lead , 1999, Other Conferences.

[83]  Tsahi Gozani,et al.  Active nondestructive assay of nuclear materials: principles and applications , 1981 .

[84]  Anthony J. Peurrung,et al.  The Photon Haystack and Emerging Radiation Detection Technology , 2009 .