A complete answer to the Gaveau--Brockett problem

The note is dedicated to provide a satisfying and complete answer to the long-standing Gaveau–Brockett open problem. More precisely, we determine the exact formula of the Carnot–Carathéodory distance on arbitrary step-two groups. The basic idea of the proof is combining Varadhan’s formulas with the explicit expression for the associated heat kernel ph and the method of stationary phase. However, we have to introduce a number of original new methods, especially the usage of the concept of “Operator convexity”. Next, new integral expressions for ph by means of properties of Bessel functions will be presented. An unexpected direct proof for the well-known positivity of ph via its original integral formula, will play an important role. Furthermore, all normal geodesics joining the identity element o to any given g as well as the cut locus can be characterized on every step-two groups. Finally, the corresponding results in Riemannian geometry on step-two groups will be briefly presented as well.

[1]  S. Varadhan,et al.  Diffusion processes , 2018, Introduction to Stochastic Differential Equations with Applications to Modelling in Biology and Finance.

[2]  R. Montgomery A Tour of Subriemannian Geometries, Their Geodesics and Applications , 2006 .

[3]  L. Rifford Ricci curvatures in Carnot groups , 2013, 1305.6057.

[4]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[5]  Stanislav Molchanov,et al.  DIFFUSION PROCESSES AND RIEMANNIAN GEOMETRY , 1975 .

[6]  A. Gabriel Editor , 2018, Best "New" African Poets 2018 Anthology.

[7]  Hong-Quan Li,et al.  Sub-Riemannian geometry on some step-two Carnot groups , 2021, 2102.09860.

[8]  R. Brockett Control Theory and Singular Riemannian Geometry , 1982 .

[9]  J. Bismut Large Deviations and the Malliavin Calculus , 1984 .

[10]  U. Boscain,et al.  A Comprehensive Introduction to Sub-Riemannian Geometry , 2019 .

[11]  Francesco Uguzzoni,et al.  Stratified Lie groups and potential theory for their sub-Laplacians , 2007 .

[12]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[13]  B. Gaveau,et al.  Hamilton–Jacobi theory and the heat kernel on Heisenberg groups , 2000 .

[14]  B. Gaveau Principe de moindre action, propagation de la chaleur et estimees sous elliptiques sur certains groupes nilpotents , 1977 .

[15]  Hong-Quan Li,et al.  The Carnot-Carath\'eodory distance on $2$-step groups , 2021, 2112.07822.

[16]  L. Rifford Sub-Riemannian Geometry and Optimal Transport , 2014 .

[17]  Maura B. Mast,et al.  Length minimizing geodesics and the length spectrum of Riemannian two-step nilmanifolds , 2003 .

[18]  The Green Function of Model Step Two Hypoelliptic Operators and the Analysis of Certain Tangential Cauchy Riemann Complexes , 1996 .

[19]  Jean-Paul Gauthier,et al.  On 2-Step, Corank 2, Nilpotent Sub-Riemannian Metrics , 2011, SIAM J. Control. Optim..

[20]  R. Léandre,et al.  Majoration en temps petit de la densité d'une diffusion dégénérée , 1987 .

[21]  Nicholas T. Varopoulos,et al.  Analysis and Geometry on Groups , 1993 .

[22]  E. W. Bbookbtt,et al.  Nonlinear Control Theory and Differential Geometry , 2010 .

[23]  J. Cygan Heat kernels for class 2 nilpotent groups , 1979 .

[24]  astronomy Physics,et al.  Principe de Moindre Action , 2010 .

[25]  S. Varadhan On the behavior of the fundamental solution of the heat equation with variable coefficients , 2010 .

[26]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[27]  G. Ben Arous,et al.  Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus , 1988 .