Variance estimates for random disc-polygons in smooth convex discs

In this paper we prove asymptotic upper bounds on the variance of the number of vertices and missed area of inscribed random disc-polygons in smooth convex discs whose boundary is C2+. We also consider a circumscribed variant of this probability model in which the convex disc is approximated by the intersection of random circles.

[1]  K. Bezdek,et al.  From r-dual sets to uniform contractions , 2017, 1704.08290.

[2]  Imre Bárány,et al.  Random points and lattice points in convex bodies , 2008 .

[3]  Márton Naszódi,et al.  The Kneser–Poulsen Conjecture for Special Contractions , 2017, Discret. Comput. Geom..

[4]  N. Turchi,et al.  Limit theorems for random polytopes with vertices on convex surfaces , 2017, Advances in Applied Probability.

[5]  F. Fodor,et al.  Inequalities for hyperconvex sets , 2016 .

[6]  Imre Bárány,et al.  On the variance of random polygons , 2010, CCCG.

[7]  Ferenc Fodor,et al.  Mean width of random polytopes in a reasonably smooth convex body , 2009, J. Multivar. Anal..

[8]  F. Fodor,et al.  On Random Disc Polygons in Smooth Convex Discs , 2014, Advances in Applied Probability.

[9]  M. Reitzner Recent Results on Random Polytopes , 2008 .

[10]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[11]  K. Böröczky,et al.  The Mean Width of Circumscribed Random Polytopes , 2009, Canadian Mathematical Bulletin.

[12]  B. Efron,et al.  The Jackknife Estimate of Variance , 1981 .

[13]  Zsolt Lángi,et al.  Ball-Polyhedra , 2007, Discret. Comput. Geom..

[14]  V. H. Vu SHARP CONCENTRATION OF RANDOM POLYTOPES , 2008 .

[15]  Matthias Reitzner,et al.  Central limit theorems for random polytopes , 2005 .

[16]  I. Bárány,et al.  On the variance of random polytopes , 2010 .

[17]  Rolf Schneider,et al.  Approximation of Convex Bodies by Polytopes , 1981 .

[18]  J. E. Yukich,et al.  Variance asymptotics and central limit theorems for generalized growth processes with applications to convex hulls and maximal points , 2008 .

[19]  Wolfgang Weil,et al.  CHAPTER 5.2 – Stochastic Geometry , 1993 .

[20]  Intrinsic volumes of inscribed random polytopes in smooth convex bodies , 2009, Advances in Applied Probability.

[21]  F. Fodor,et al.  Disc-polygonal approximations of planar spindle convex sets , 2012, Acta Scientiarum Mathematicarum.

[22]  Van Vu Central limit theorems for random polytopes in a smooth convex set , 2005 .

[23]  A. Rényi,et al.  über die konvexe Hülle von n zufällig gewählten Punkten , 1963 .

[24]  Matthias Reitzner,et al.  Random polytopes and the Efron--Stein jackknife inequality , 2003 .

[25]  Imre Bárány,et al.  CONVEX-BODIES, ECONOMIC CAP COVERINGS, RANDOM POLYTOPES , 1988 .

[26]  Ferenc Fodor,et al.  Dowker-type theorems for hyperconvex discs , 2015, Period. Math. Hung..

[27]  W. Weil,et al.  Stochastic and Integral Geometry , 2008 .

[28]  D. Hug,et al.  The volume of random polytopes circumscribed around a convex body , 2014, 1409.8105.

[29]  Daniel Hug,et al.  Random points in halfspheres , 2015, Random Struct. Algorithms.

[30]  K. Böröczky,et al.  The mean width of random polytopes circumscribed around a convex body , 2009, 0901.3419.

[31]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[32]  Grigoris Paouris,et al.  Random ball-polyhedra and inequalities for intrinsic volumes , 2015 .

[33]  A. Rényi,et al.  über die konvexe Hülle von n zufÄllig gewÄhlten Punkten. II , 1964 .

[34]  Random polytopes: central limit theorems for intrinsic volumes , 2017, 1702.01069.

[35]  Rolf Schneider,et al.  Discrete Aspects of Stochastic Geometry , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[36]  H. Martini,et al.  Ball convex bodies in Minkowski spaces , 2016, 1603.01956.

[37]  I. Barany,et al.  Central limit theorems for Gaussian polytopes , 2006 .