Xylose fermentation by Saccharomyces cerevisiae

We have performed a comparative study of xylose utilization in Saccharomyces cerevisiae transformants expressing two key enzymes in xylose metabolism, xylose reductase (XR) and xylitol dehydrogenase (XDH), and in a prototypic xylose-utilizing yeast, Pichia stipitis. In the absence of respiration (see text), baker's yeast cells convert half of the xylose to xylitol and ethanol, whereas P. stipilis cells display rather a homofermentative conversion of xylose to ethanol. Xylitol production by baker's yeast is interpreted as a result of the dual cofactor dependence of the XR and the generation of NADPH by the pentose phosphate pathway. Further limitations of xylose utilization in S. cerevisiae cells are very likely caused by an insufficient capacity of the non-oxidative pentose phosphate pathway, as indicated by accumulation of sedoheptulose-7-phosphate and the absence of fructose-1,6-bisphosphate and pyruvate accumulation. By contrast, uptake at high substrate concentrations probably does not limit xylose conversion in S. cerevisiae XYL1/XYL2 transformants.

[1]  L. Bisson,et al.  Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[2]  V. P. Cirillo Sugar Transport in Microorganisms , 1961 .

[3]  T. Jeffries,et al.  Conversion of pentoses to ethanol by yeasts and fungi. , 1989, Critical reviews in biotechnology.

[4]  L. Bisson,et al.  Characterization of Xylose Uptake in the Yeasts Pichia heedii and Pichia stipitis , 1989, Applied and environmental microbiology.

[5]  M. Herve,et al.  Determination of flux through different metabolite pathways in Saccharomyces cerevisiae by 1H-NMR and 13C-NMR spectroscopy. , 1991, European journal of biochemistry.

[6]  J. A. Barnett The utilization of sugars by yeasts. , 1976, Advances in carbohydrate chemistry and biochemistry.

[7]  Thomas W. Jeffries,et al.  Emerging technology for fermenting d-xylose , 1985 .

[8]  V. P. Cirillo,et al.  Glucose transport in a kinaseless Saccharomyces cerevisiae mutant , 1987, Journal of bacteriology.

[9]  M. Rizzi,et al.  Kinetics of ethanol production from D‐xylose by the yeast pichia stipitis , 1990 .

[10]  John D. Wright,et al.  Xylose fermentation , 1989 .

[11]  A. Busturia,et al.  Catabolite inactivation of the glucose transport system in Saccharomyces cerevisiae. , 1986, Journal of general microbiology.

[12]  M. Ciriacy,et al.  Physiological Effects of Seven Different Blocks in Glycolysis in Saccharomyces cerevisiae , 1979, Journal of bacteriology.

[13]  Hans Ulrich Bergmeyer,et al.  Methods of Enzymatic Analysis , 2019 .

[14]  T. Jeffries Utilization of xylose by bacteria, yeasts, and fungi. , 1983, Advances in biochemical engineering/biotechnology.

[15]  J. Saddler,et al.  Multiplicity of beta-1,4-xylanase in microorganisms: functions and applications. , 1988, Microbiological reviews.

[16]  B. Hahn-Hägerdal,et al.  Effect of Oxygenation on Xylose Fermentation by Pichia stipitis , 1990, Applied and environmental microbiology.

[17]  G. Halliwell,et al.  Utilization of Carboxymethylcellulose and Enzyme Synthesis by Trichoderma koningii , 1981 .

[18]  M. Ladisch,et al.  Comparative evaluation of ethanol production by xylose-fermenting yeasts presented high xylose concentrations , 1985, Biotechnology Letters.

[19]  M. Rizzi,et al.  Xylose fermentation by yeasts , 1988, Applied Microbiology and Biotechnology.

[20]  Cornelis P. Hollenberg,et al.  Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant , 1990, Current Genetics.

[21]  L. Bisson Derepression of high-affinity glucose uptake requires a functional secretory system in Saccharomyces cerevisiae , 1988, Journal of bacteriology.

[22]  B. Prior,et al.  An investigation of d-{1-13C} xylose metabolism in Pichia stipitis under aerobic and anaerobic conditions , 1988, Applied Microbiology and Biotechnology.

[23]  R. Maleszka,et al.  Alcohol production from sugar mixtures by Pachysolen tannophilus , 1982 .

[24]  P. M. Bruinenberg,et al.  An enzymic analysis of NADPH production and consumption in Candida utilis. , 1983, Journal of general microbiology.

[25]  R. Moletta,et al.  Xylitol production from D-xylose byCandida guillermondii: Fermentation behaviour , 1991, Biotechnology Letters.

[26]  J. Broach [21] Construction of high copy yeast vectors using 2-μm circle sequences , 1983 .

[27]  Bärbel Hahn-Hägerdal,et al.  Intermediary Metabolite Concentrations in Xylulose- and Glucose-Fermenting Saccharomyces cerevisiae Cells , 1990, Applied and environmental microbiology.

[28]  R. Serrano,et al.  Regulatory properties of the constitutive hexose transport in saccharomyces cerevisiae , 1974, Molecular and Cellular Biochemistry.

[29]  Li Fu Chen,et al.  Conversion of hemicellulose carbohydrates , 1981 .

[30]  C. Hollenberg,et al.  Cloning and expression in Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase-encoding gene (XYL1) from the xylose-assimilating yeast Pichia stipitis. , 1991, Gene.

[31]  Bernard A. Prior,et al.  Fermentation of D-xylose by the yeasts Candida shehatae and Pichia stipitis. , 1989 .

[32]  J. Ramos,et al.  Relationship between low- and high-affinity glucose transport systems of Saccharomyces cerevisiae , 1988, Journal of bacteriology.

[33]  S. Kilian,et al.  Transport of xylose and glucose in the xylose-fermenting yeast Pichia stipitis , 1988, Applied Microbiology and Biotechnology.

[34]  P. M. Bruinenberg,et al.  NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts , 1984, Applied Microbiology and Biotechnology.

[35]  M. Rizzi,et al.  Controlled limited aeration and metabolic regulation during the production of ethanol from D-xylose by Pichia stipitis , 1989 .

[36]  C. Hollenberg,et al.  The fermentation of xylose —an analysis of the expression of Bacillus and Actinoplanes xylose isomerase genes in yeast , 1989, Applied Microbiology and Biotechnology.

[37]  P. M. Bruinenberg,et al.  Utilization of formate as an additional energy source by glucose-limited chemostat cultures ofCandida utilis CBS 621 andSaccharomyces cerevisiae CBS 8066 , 1985, Archives of Microbiology.

[38]  C. Hollenberg,et al.  Regulated overproduction of α-amylase by transformation of the amylolytic yeast Schwanniomyces occidentalis , 1989, Current Genetics.

[39]  J. Gancedo,et al.  Concentrations of intermediary metabolites in yeast. , 1973, Biochimie.

[40]  J. Gancedo,et al.  Reduced pyridine-nucleotides balance in glucose-growing Saccharomyces cerevisiae. , 1973, European journal of biochemistry.

[41]  H. Schneider,et al.  Growth of yeasts on D-xylulose , 1980 .

[42]  L. Bisson,et al.  Expression of kinase-dependent glucose uptake in Saccharomyces cerevisiae , 1984, Journal of bacteriology.

[43]  B. Hall,et al.  Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae , 1987, Applied and environmental microbiology.

[44]  M. Rizzi,et al.  Xylose fermentation by yeasts , 2004, Applied Microbiology and Biotechnology.