A factored variant of the Newton iteration for the solution of algebraic Riccati equations via the matrix sign function

In this paper we introduce a variant of the Newton iteration for the matrix sign function that results in an efficient numerical solver for a certain class of algebraic Riccati equations (AREs). In particular, when the Hamiltonian matrix associated with the ARE can be composed as ABBTCTC−AT$\left [\begin {array}{llll}{A}&{BB^{T}}\\{C^{T}C}&{-A^{T}}\end {array}\right ]$, with B and CT$C^{T}$ having a much larger number of rows than columns, the new algorithm exploits the special structure of the off-diagonal blocks to yield an alternative factored Newton iteration which reduces the cost per iteration by a factor of up to 8 (16 in case A is symmetric negative definite) w.r.t. the conventional iterative scheme. Experiments with a large collection of benchmark examples show that the factored iteration attains numerical accuracy similar to that of the conventional Newton iteration as well as the structure-preserving doubling algorithm. High-performance implementations of these methods, making heavy use of LAPACK linked to a multi-threaded implementation of BLAS, demonstrate the clear advantage of the new iteration on a 48-core AMD-based platform.

[1]  Peter Benner,et al.  CAREX - A Collection of Benchmark Examples for Continuous-Time Algebraic Riccati Equations (Version , 1999 .

[2]  Jan G. Korvink,et al.  Oberwolfach Benchmark Collection , 2005 .

[3]  A. Laub,et al.  Parallel algorithms for algebraic Riccati equations , 1991 .

[4]  Peter Benner,et al.  Dimension Reduction of Large-Scale Systems , 2005 .

[5]  A. Laub,et al.  The matrix sign function , 1995, IEEE Trans. Autom. Control..

[6]  Enrique S. Quintana-Ortí,et al.  Solving stable generalized Lyapunov equations with the matrix sign function , 1999, Numerical Algorithms.

[7]  Leiba Rodman,et al.  Algebraic Riccati equations , 1995 .

[8]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[9]  Enrique S. Quintana-Ortí,et al.  Parallele Numerische Simulation Für Physik Und Kontinuumsmechanik Solving Linear-quadratic Optimal Control Problems on Parallel Computers Preprintreihe Des Chemnitzer Sfb 393 , 2022 .

[10]  J. D. Roberts,et al.  Linear model reduction and solution of the algebraic Riccati equation by use of the sign function , 1980 .

[11]  Vladimír Kučera,et al.  Analysis and design of discrete linear control systems , 1991 .

[12]  Enrique S. Quintana-Ortí,et al.  A mixed-precision algorithm for the solution of Lyapunov equations on hybrid CPU-GPU platforms , 2009 .

[13]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[14]  P. Benner Numerical solution of special algebraic Riccati equations via an exact line search method , 1997, 1997 European Control Conference (ECC).

[15]  Peter Benner,et al.  DAREX - A Collection of Benchmark Examples for Discrete-Time Algebraic Riccati Equations (Version , 1999 .

[16]  Siep Weiland,et al.  H2 Optimal Control , 2000 .

[17]  R. Byers Solving the algebraic Riccati equation with the matrix sign function , 1987 .

[18]  Uwe Mackenroth,et al.  H 2 Optimal Control , 2004 .

[19]  W.-W. Lin,et al.  A structure-preserving doubling algorithm for continuous-time algebraic Riccati equations , 2004 .

[20]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[21]  Bruno Iannazzo,et al.  Numerical Solution of Algebraic Riccati Equations , 2012, Fundamentals of algorithms.

[22]  N. Higham Computing the polar decomposition with applications , 1986 .

[23]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[24]  Paul Van Dooren,et al.  A collection of benchmark examples for model reduction of linear time invariant dynamical systems. , 2002 .

[25]  Harald K. Wimmer,et al.  On the algebraic Riccati equation , 1976, Bulletin of the Australian Mathematical Society.

[26]  Enrique S. Quintana-Ortí,et al.  State-space truncation methods for parallel model reduction of large-scale systems , 2003, Parallel Comput..

[27]  Kwang-Ting Cheng,et al.  Fundamentals of algorithms , 2009 .