Effect of surface disorder on the domain structure of PLZT ceramics

ABSTRACT Pb1-xLax(Zr0.65Ti0.35)1-x/4O3 (PLZT x/65/35) ceramics were studied by Piezoresponse Force Microscopy in order to understand the origin of domain structure as a function of La content. We show that the domain topology is mainly determined by the composition and grain size. The characteristic correlation length decreases with increasing La content, being sensitive also to the synthesis method. The behavior of the correlation length is linked to the macroscopic properties, showing a strong increase of disorder with La doping. The roughness exponent for the domain wall in PLZT 9/65/35 is close to 2/3 indicating 1D character of domain walls in relaxors.

[1]  M. Kosec,et al.  Quasi-one-dimensional domain walls in ferroelectric ceramics: Evidence from domain dynamics and wall roughness measurements , 2011 .

[2]  Anna N. Morozovska,et al.  Surface Domain Structures and Mesoscopic Phase Transition in Relaxor Ferroelectrics , 2011 .

[3]  Sergei V. Kalinin,et al.  Electromechanical Imaging and Spectroscopy of Ferroelectric and Piezoelectric Materials: State of the Art and Prospects for the Future , 2009 .

[4]  A. Kholkin,et al.  Grain size effect and local disorder in polycrystalline relaxors via scanning probe microscopy , 2007 .

[5]  V. Shvartsman,et al.  Evolution of nanodomains in 0.9PbMg1/3Nb2/3O3-0.1PbTiO3 single crystals , 2007 .

[6]  M. Kosec,et al.  Polarization switching in heterophase nanostructures: PLZT relaxor ceramics , 2005 .

[7]  M. Kosec,et al.  AC Switching of Relaxor PLZT Ceramics , 2005 .

[8]  V. Shvartsman,et al.  Polar nanodomains and local ferroelectric phenomena in relaxor lead lanthanum zirconate titanate ceramics , 2005 .

[9]  T. Giamarchi,et al.  Domain wall roughness in epitaxial ferroelectric PbZr0.2Ti0.8O3 thin films. , 2004, Physical review letters.

[10]  F. Bai,et al.  Domain hierarchy in annealed (001)-oriented Pb(Mg1∕3Nb2∕3)O3-x%PbTiO3 single crystals , 2004 .

[11]  V. Shvartsman,et al.  Ferroelectric-to-relaxor transition behaviour of BaTiO3 ceramics doped with La(Mg1/2Ti1/2)O3 , 2004 .

[12]  V. Shvartsman,et al.  Domain structure of0.8Pb(Mg1/3Nb2/3)O3−0.2PbTiO3studied by piezoresponse force microscopy , 2004 .

[13]  V. Shur,et al.  Fractal Clusters in Relaxor PLZT Ceramics: Evolution in Electric Field , 2004 .

[14]  V. Shvartsman,et al.  Nanoscale domains and local piezoelectric hysteresis in Pb(Zn1/3Nb2/3)O3-4.5%PbTIO3 single crystals , 2003 .

[15]  A. Kholkin,et al.  Structure of Nanodomains in Relaxors , 2003 .

[16]  R. Pankrath,et al.  Ferroelectric nanodomains in the uniaxial relaxor system Sr 0.61-x Ba 0.39 Nb 2 O 6 :Ce 3+ x , 2001 .

[17]  P. Günter,et al.  Ferroelectric domain structures in PZN–8%PT single crystals studied by scanning force microscopy , 2001 .

[18]  C. Chappert,et al.  DOMAIN WALL CREEP IN AN ISING ULTRATHIN MAGNETIC FILM , 1998 .

[19]  K. H. Härdtl,et al.  Distribution of A‐Site and B‐Site Vacancies in (Pb,La)(Ti,Zr)O3 Ceramics , 1972 .

[20]  T. Giamarchi,et al.  Domain Wall Roughness in Epitaxial Ferroelectric PbZr 0 . 2 Ti 0 . 8 O 3 Thin Films , 2017 .

[21]  D. Kiselev Piezoresponse force microscopy of ferroelectric relaxors , 2010 .

[22]  M. Antonova,et al.  PLZT—Synthesis, sintering and ceramics microstructure , 2006 .

[23]  V. Shvartsman,et al.  Domain structure of 0.8Pb(Mg1/3Nb2/3)O3-0.2PbTiO3 studied by piezoresponse force microscopy , 2004 .